Skip to main content

Multi-objective Genetic Topological Optimization for Design of Blast Resistant Composites

Abstract

Composites make it possible to produce materials with properties that are unattainable with single phase materials. This paper examines the use of multi-objective genetic topological optimization to design blast resistant composites. The fundamental problem of the design of a two-layer composite plate that is subjected to blast is considered using the finite element method. Two materials are used to form the microstructure of each layer. The microstructure and thickness of each layer is optimized for the two-layer plate to minimize the weight and stress-to-strength ratio. A set of optimal blast resistant composite microstructures that meet design requirements is demonstrated.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Langdona, G.S., Nuricka, G.N., Lemanskia, S.L., et al.: Failure characterization of blast-loaded fibre-metal laminate panels based on aluminum and glass-fibre reinforced polypropylene. Compos Sci Technol 67(7), 1385–1405 (2007)

    Article  Google Scholar 

  2. Tsai, L., Prakash, V.: Structure of weak shock waves in 2-D layered material systems. Int. J. Solids Struct. 42(2), 727–750 (2005)

    Article  Google Scholar 

  3. Bendsoe, M.P., Kikuchi, N.: Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Eng. 71, 197–224 (1988)

    Article  Google Scholar 

  4. Pederson, P.: On the minimum mass layout if trusses. In: AGARD conf. proc. No. 36, Symposium on Structural Optimization, AGARD-CP-36-70

  5. Zhou, M., Rozvany, G.I.N.: DCOC: an optimality criteria method for large systems, Part I. Theory Struct. Optim. 5(1–2), 12–25 (1992)

    Article  Google Scholar 

  6. Cheng, G., Olhoff, N.: An investigation concerning optimal design of solid elastic plates. Int. J. Solid Struct. 17(3), 305–323 (1981)

    Article  Google Scholar 

  7. Sigmund, O.: Materials with prescribed constitutive parameters: an inverse homogenization problem. Int. J. Solid Struct. 31(17), 2313–2329 (1994)

    Article  Google Scholar 

  8. Rodrigues, H.C., Fernandes, P.: A material based model for topology optimization of thermoelastic structures. Int. J. Numer. Methods Eng. 38(12), 1951–1965 (1995)

    Article  Google Scholar 

  9. Haslinger, J.: Finite element approximation for optimal shape design: theory and applications. Wiley, New York (1988)

    Google Scholar 

  10. Fonseca JSO. PhD thesis: Design of microstructures of periodic composite materials. Ann Arbor: U of Michigan (1997)

  11. Sanchez-Palencia, E.: Equations aux derivees partielles dans un type de milieux heterogenes. Computes Rendus de l’Academie des Sciences de Paris 272(A-B), A1410–A1413 (1971)

    Google Scholar 

  12. Keller, J.B.: Effective behavior of heterogeneous media. In: Landman, U. (ed.) Statistical mechanics and statistical methods in theory and application: a tribute to Elliot W. Montroll, pp. 429–443. Plenum Press, Plenum (1977)

    Google Scholar 

  13. Bakhvalov, N., Panasenko, G.: Homogenization: averaging process in periodic media. Kluwer, Dordrecht (1989)

    Book  Google Scholar 

  14. De Kruijf, N., Zho, S., Li, Q., et al.: Topological design of structures and composite materials with multiobjectives. Int. J. Solids Struct. 44, 7092–7109 (2007)

    Article  Google Scholar 

  15. Guedes, JM. PhD thesis: Nonlinear comutational models for composite materials using homogenization. N. Kikuchi, advisor. Ann Arbor: U of Michigan (1990)

  16. Smith, P.D., Hetherington, J.G.: Blast and ballistic loading of structures. Laxtons, Oxford (1994)

    Google Scholar 

  17. Newmark, N.M., Hansen, R.J.: Design of blast resistant structures. In: Harris, C. (ed.) Shock and vibration handbook, vol. 3. McGraw-Hill, New York (1961)

    Google Scholar 

  18. Lohner, R.: Applied CFD, techniques: an introduction based on finite element methods. John Wiley and Sons, Chichester (2001)

    Google Scholar 

  19. Sigmund O. PhD thesis: Design of material structures using topology optimization. Lyngby: Technical University of Denmark (1994)

  20. Currie, I.G.: Fundamental mechanics of fluids, 3rd edn. CRC Press, Boca Raton (2003)

    Google Scholar 

  21. Logan, D.L.: A first course in the finite element method, 3rd edn. Wadsworth Group, Pacific Grove (2002)

    Google Scholar 

  22. Pareto, V.: Manual of political economy. Macmillan, New York (1971)

    Google Scholar 

  23. Miettinen, K.: Nonlinear multiobjective optimization. Kluwer, Boston (1999)

    Google Scholar 

  24. Osyczka, A.: Multicriterion optimization in engineering. Ellis Horwood, Chichester (1984)

    Google Scholar 

  25. Rosenberg RS. PhD thesis: Simulation of genetic populations with biochemical properties. Ann Arbor: U of Michigan (1967)

  26. Deb, K.: Multi-objective optimization using evolutionary algorithms. John Wiley, Chichester (2001)

    Google Scholar 

  27. Srinivas, N., Deb, K.: Multiobjective optimization using nondominated sorting in genetic algorithms. Evol Comput 2(3), 221–248 (1995)

    Article  Google Scholar 

  28. Rammohan, R., Farfan, B., Su, M.F., et al.: Hybrid genetic optimization for design of photonic crystal emitters. Eng Optim 42(9), 791–809 (2010)

    Article  Google Scholar 

  29. Konak, A., Coit, D.W., Smith, A.: Multi-objective optimization using genetic algorithms: a tutorial. Reliab Eng Syst Saf 91, 992–1007 (2006)

    Article  Google Scholar 

  30. Taboada, H.A., Espiritu, J.F., David, W., et al.: MOMS-GA: a multi-objective multi-state genetic algorithm for system reliability optimization design problems. IEEE Trans Reliab 57(1), 182–191 (2008)

    Article  Google Scholar 

  31. Liao, X., Li, Q., Yang, X., et al.: A two-stage multi-objective optimisation of vehicle crashworthiness under frontal impact. Int. J. Crashworthiness 13(3), 279–288 (2008)

    Article  Google Scholar 

  32. ANSYS-AUTODYN. Interactive non-linear dynamic analysis software, version 11.0 User’s Manual. Century Dynamics Inc. (2007)

Download references

Acknowledgments

This research is mainly funded by the Army Research Office (ARO) Grant # W911NF-08-1-0421. The authors greatly appreciate this support. Special Thanks to G. Cruz from University of Texas, San Antonio for his help in blast simulation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Reda Taha.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sheyka, M.P., Altunc, A.B. & Taha, M.M.R. Multi-objective Genetic Topological Optimization for Design of Blast Resistant Composites. Appl Compos Mater 19, 785–798 (2012). https://doi.org/10.1007/s10443-011-9244-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-011-9244-5

Keywords

  • Finite element method
  • Composites
  • Topology
  • Optimization