Skip to main content
Log in

Rubber Impact on 3D Textile Composites

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

A low velocity impact study of aircraft tire rubber on 3D textile-reinforced composite plates was performed experimentally and numerically. In contrast to regular unidirectional composite laminates, no delaminations occur in such a 3D textile composite. Yarn decohesions, matrix cracks and yarn ruptures have been identified as the major damage mechanisms under impact load. An increase in the number of 3D warp yarns is proposed to improve the impact damage resistance. The characteristic of a rubber impact is the high amount of elastic energy stored in the impactor during impact, which was more than 90% of the initial kinetic energy. This large geometrical deformation of the rubber during impact leads to a less localised loading of the target structure and poses great challenges for the numerical modelling. A hyperelastic Mooney-Rivlin constitutive law was used in Abaqus/Explicit based on a step-by-step validation with static rubber compression tests and low velocity impact tests on aluminium plates. Simulation models of the textile weave were developed on the meso- and macro-scale. The final correlation between impact simulation results on 3D textile-reinforced composite plates and impact test data was promising, highlighting the potential of such numerical simulation tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Mouritz, A.P., Bannister, M.K., Falzon, P.J., Leong, K.H.: Review of applications for advanced three-dimensional fibre textile composites. Compos. A 30(12), 1445–1461 (1999)

    Article  Google Scholar 

  2. Byun, J.H., Um, M.K., Hwang, B.S., Song, S.W.: Impact performance of 3D interlock textile composites. In: Composites Technologies for 2020, Ye, L., Mai, Y.W., Su, Z. (eds.) Proceedings of 4th Asian-Australasian Conference on Composite Materials (ACCM-4), Sydney, Australia, July 6–7, 2004

  3. Lv, L., Sun, B., Qiu, Y., Gu, B., Gu, B.: Energy absorptions and failure modes of 3D orthogonal hybrid woven composite struck by flat-ended rod. Polymer. Compos. 27(4), 410–416 (2006)

    Article  CAS  Google Scholar 

  4. Hu, H., Sun, B., Sun, H., Gu, B.: A comparative study of the impact response of 3D textile composites and aluminium plates. J. Compos. Mater. 44(5), 593–619 (2010)

    Article  CAS  Google Scholar 

  5. Byers, A.: The Crash of the Concorde. The Rosen Publishing Group, Inc., New York (2003)

    Google Scholar 

  6. Mines, R.A.W., McKnown, S., Birch, R.S.: Impact of aircraft rubber tyre fragments on aluminium alloy plates: I—Experimental. Int. J. Impact Eng. 34(4), 627–646 (2007)

    Article  Google Scholar 

  7. Karagiozova, D., Mines, R.A.W.: Impact of aircraft rubber tyre fragments on aluminium alloy plates: II—Numerical simulation using LS-DYNA. Int. J. Impact Eng. 34(4), 647–667 (2007)

    Article  Google Scholar 

  8. Birch, R.S., Bergler, C., Kracht, M., Karagozova, D., Mines, R.A.W.: Post-test simulation of airliner wing access panel subject to tyre debris impact. 5th European LS-DYNA Users Conference, Birmingham, UK, May 25–26, 2005

  9. Hörmann, M.: FE-application in aircraft structure analysis. 10th International LS-DYNA Users Conference, Dearborn, MI, June 8–10, 2008

  10. Toso-Pentecote, N., Johnson, A.F., Chabrier, G.: Modelling and simulation of tyre impacts on stiffened composite panels. Composites 2009, 2nd ECCOMAS Thematic Conference on the Mechanical Response of Composites, London, April 1–3, 2009

  11. Toso-Pentecote, N., Schwinn, D., Johnson, A.F.: Modelling and simulation of tyre impacts on stiffened composite panels. SAMPE Europe International Conference, Paris, April 12–14, 2010

  12. Dau, F., Duplessis Kergomard, Y.: Study on interlock 3X damage mechanisms under impact loading using a deformable impactor. 14th International Conference on Experimental Mechanics (ICEM 14), Poitiers, France, July 4–9, 2010

  13. Duplessis Kergomard, Y., Dau, F., Heimbs, S., Besnard, G., Hild, F.: Study on interlock 3X damage mechanisms under impact loading using a deformable impactor. 17èmes Journées Nationales sur les Composites (JNC 17), Poitiers, France, June 15–17, 2011

  14. Mooney, M.: A theory of large elastic deformation. J. Appl. Phys. 11(9), 582–592 (1940)

    Article  Google Scholar 

  15. Rivlin, R.S.: Large elastic deformations of isotropic materials. I. Fundamental concepts. Phil. Trans. Roy. Soc. Lond. A240, 459–490 (1948)

    Google Scholar 

  16. Johnson, A.F., Kempe, G., Simon, J.: Design of composite wing access cover under impact loads. Appl. Compos. Mater. 7(4), 219–229 (2000)

    Article  Google Scholar 

  17. Neves, R.R.V., Micheli, G.B., Alves, M.: An experimental and numerical investigation on tyre impact. Int. J. Impact Eng. 37(6), 685–693 (2010)

    Article  Google Scholar 

  18. Bolarinwa, E.O., Olatunbosun, O.A.: On rubber material properties for FE tyre model. Proceedings of the Ninth Annual Postgraduate Research Symposium, pp. 21–25. University of Birmingham, UK (2003)

  19. Bolarinwa, E.O., Olatunbosun, O.A.: Finite element simulation of the tyre burst test. Proc. Inst. Mech. Eng. 218, Part D, 1251–1258 (2004)

    Google Scholar 

  20. Reid, J.D., Boesch, D.A., Bielenberg, R.W.: Detailed tire modeling for crash applications. Int. J. Crashworthiness 12(5), 521–529 (2007)

    Article  Google Scholar 

  21. Helnwein, P., Liu, C.H., Meschkie, G., Mang, H.A.: A new 3-D finite element model for cord-reinforced rubber composites—application to analysis of automobile tires. Finite Elem. Anal. Des. 14(1), 1–16 (1993)

    Article  Google Scholar 

  22. Nguyen, S.N., Greenhalgh, E.S., Olsson, R., Iannucci, L., Curtis, P.T.: Modeling the lofting of runway debris by aircraft tires. J. Aircraft 45(5), 1701–1714 (2008)

    Article  Google Scholar 

  23. Nguyen, S.N., Greenhalgh, E.S., Iannucci, L., Olsson, R., Curtis, P.T.: Improved models for runway debris lofting simulations. Aeronaut. J. 113(1148), 669–681 (2009)

    Google Scholar 

  24. Nguyen, S.N., Greenhalgh, E.S., Olsson, R., Iannucci, L., Curtis, P.T.: Parametric analysis of runway stone lofting mechanisms. Int. J. Impact Eng. 37(5), 502–514 (2010)

    Article  Google Scholar 

  25. Song, B., Chen, W.: One-dimensional dynamic compressive behaviour of EPDM rubber. J. Eng. Mater. Tech. 125(3), 294–301 (2003)

    Article  CAS  Google Scholar 

  26. Yang, L.M., Shim, V.P.W., Lim, C.T.: A visco-hyperelastic approach to modeling the constitutive behaviour of rubber. Int. J. Impact Eng. 24(6–7), 545–560 (2000)

    Article  Google Scholar 

  27. Hoo Fatt, M.S., Ouyang, X.: Three-dimensional constitutive equations for styrene butadiene rubber at high strain rates. Mech. Mater. 40(1–2), 1–16 (2008)

    Article  Google Scholar 

  28. Shim, V.P.W., Yang, L.M., Lim, C.T., Law, P.M.: A visco-hyperelastic constitutive model to characterize both tensile and compressive behaviour of rubber. J. Appl. Polymer Sci. 92(1), 523–531 (2004)

    Article  CAS  Google Scholar 

  29. Li, Z., Sun, B., Gu, B.: FEM simulation of 3D angle-interlock woven composite under ballistic impact from unit cell approach. Comput. Mater. Sci. 49(1), 171–183 (2010)

    Article  CAS  Google Scholar 

  30. Naik, N.K., Azad, S.N.M., Durga Prasad, P., Thuruthimattam, B.J.: Stress and failure analysis of 3D orthogonal interlock woven composites. J. Reinforc. Plast. Compos. 20(17), 1485–1523 (2001)

    Article  CAS  Google Scholar 

  31. Nauman, S., Boussu, F., Legrand, X., Koncar, V.: Geometrical modelling of 3D interlock fabric. 13th European Conference on Composite Materials (ECCM-13), Stockholm, Sweden, June 2–5, 2008

  32. Schneider, J., Marcin, L., Aboura, Z., Marshal, D.: Experimental investigation and behaviour modeling of a 3D interlock woven fabric composite: part 1. In: Recent Advances in Textile Composites, Advani, S.G. (ed.) Proc. 9th International Conference on Textile Composites, Newark, DE, Oct. 13–15, 2008

  33. Marcin, L., Schneider, J., Kaminski, M., Maire, J.F., Marsal, D.: Experimental investigation and behaviour modeling of a 3D interlock woven fabric composite: part 2. In: Recent Advances in Textile Composites, Advani, S.G. (ed.) Proc. 9th International Conference on Textile Composites, Newark, DE, Oct. 13–15, 2008

  34. DeLuycker, E., Morestin, F., Boisse, P., Marsal, D.: Simulation of 3D interlock composite preforming. Compos. Struct. 88(4), 615–623 (2009)

    Article  Google Scholar 

  35. Bogdanovich, A.E.: Progressive failure modeling and strength predictions of 3-D woven composites. In: Recent Advances in Textile Composites, Advani, S.G. (ed.) Proc. 9th International Conference on Textile Composites, Newark, DE, Oct. 13–15, 2008

  36. Van Den Broucke, B., Colin de Verdiere, M., Hartung, D., Middendorf, P., Pickett, A., Ranz Angulo, D., Schouten, M., Tessmer, J.: Failure and impact modelling of textile composites: ITOOL project. SAMPE Europe 28th International Conference, Paris, April 2–4, 2007

  37. Van Den Broucke, B., Middendorf, P., Lomov, S.V., Verpoest, I.: Modelling of damage in textile reinforced composites: micro-meso approach. Proceedings of Symposium on Finite Element Modeling of Textiles and Textile Composites, St. Petersburg, Russia, September 26–28, 2007

  38. Van Den Broucke, B., Hamila, N., Middendorf, P., Lomov, S.V., Boisse, P., Verpoest, I.: Determination of the mechanical properties of textile-reinforced composites taking into account textile forming parameters. Int. J. Mater. Form. 3(2), 1351–1361 (2010)

    Article  Google Scholar 

  39. Linde, P., Middendorf, P., Van Den Broucke, B., De Boer, H.: Numerical simulation of damage behaviour of textile reinforced composites in aircraft structures. 27th Congress of the International Council of the Aeronautical Sciences (ICAS 2010), Nice, France, September 19–24, 2010

  40. Chamis, C.: Mechanics of composite materials: past, present and future. J. Compos. Tech. Res. 11(1), 3–14 (1989)

    Article  CAS  Google Scholar 

  41. Schürmann, H.: Konstruieren mit Faser-Kunststoff-Verbunden. Springer, Berlin (2007)

    Google Scholar 

  42. Dumont, J.P., Ladeveze, P., Poss, M., Remond, Y.: Damage mechanics for 3-D composites. Compos. Struct. 8(2), 119–141 (1987)

    Article  Google Scholar 

  43. Ladeveze, P., Le Dantec, E.: Damage modelling of the elementary ply for laminated composites. Compos. Sci. Tech. 43(3), 257–267 (1992)

    Article  CAS  Google Scholar 

  44. Ladeveze, P.: A damage mesomodel of laminate composites. In: Lemaitre, J. (ed.) Handbook of Materials Behaviour Models, Section 10.6, vol. 3, pp. 1004–1014. Publisher Academic Press (2001)

  45. Lubineau, G., Ladeveze, P.: Construction of a micromechanics-based intralaminar mesomodel, and illustrations in ABAQUS/Standard. Comput. Mater. Sci. 43(1), 137–145 (2008)

    Article  CAS  Google Scholar 

  46. Johnson, A.F., Simon, J.: Modelling fabric reinforced composites under impact loads. In: Euromech 400: Impact and Damage Tolerance of Composite Materials and Structures. London, September 27–29, 1999

Download references

Acknowledgements

This work was performed within the project VULCOMP (Vulnerablity of Composite Structures, 2007–2010) directed by EADS and funded by ANR, which is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Heimbs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heimbs, S., Van Den Broucke, B., Duplessis Kergomard, Y. et al. Rubber Impact on 3D Textile Composites. Appl Compos Mater 19, 275–295 (2012). https://doi.org/10.1007/s10443-011-9205-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-011-9205-z

Keywords

Navigation