Skip to main content
Log in

Using Artificial Neural Networks to Predict the Fatigue Life of Different Composite Materials Including the Stress Ratio Effect

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

Artificial Neural Networks (ANN) have been successfully used in predicting the fatigue behavior of fiber-reinforced composite materials. In most cases, the predictions were obtained for the same material used in training subjected to different loading conditions. The method would be of greater value if one could predict the failure of materials other than those used for training the network. In a recent paper, ANN trained using the experimental fatigue data obtained for composites subjected to a constant stress ratio \( \left( {{\hbox{R}} = {\sigma_{{ \min }}}/{\sigma_{{ \max }}}} \right) \) was successfully used to predict the cyclic behavior of a composite made of a different material. In this work, this method is extended to include the stress ratio effect. The results show that ANN can provide accurate fatigue life prediction for different materials under different values of the stress ratio. These results can allow for the development of a materials smart database that can be used for various engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. El Kadi, H.: Modeling the mechanical behavior of fibre reinforced polymeric composite materials using artificial neural networks—A review. Compos. Struct. 73, 1–23 (2006)

    Article  Google Scholar 

  2. Zhang, Z., Friedrich, K.: Artificial neural networks applied to polymer composites: a review. Compos. Sci. Tech. 63, 2029–2044 (2003)

    Article  CAS  Google Scholar 

  3. Schalkoff, R.J.: Artificial neural networks. McGraw-Hill. (1997)

  4. Haykin, S.: Neural networks—A comprehensive foundation, 2nd ed. Prentice Hall. (1999)

  5. Skapura, D.: Building neural networks. ACM Press, Addison-Wesley (1996)

    Google Scholar 

  6. Elman, J.L.: Finding structure in time. Cog. Sci. 14, 179–211 (1990)

    Article  Google Scholar 

  7. Hagan, M.T., Demuth, H.B., Beale, M.H.: Neural network design. Campus Publishing, University of Colorado at Boulder. (2002)

  8. Aymerich, F., Serra, M.: Prediction of fatigue strength of composite laminates by means of neural network. Key Eng. Mater. 144, 231–240 (1998)

    Article  Google Scholar 

  9. Lee, J.A., Almond, D.P., Harris, B.: The use of neural networks for the prediction of fatigue lives of composite materials. Compos. A 30, 1159–1169 (1999)

    Article  Google Scholar 

  10. Al-Assaf, Y., El Kadi, H.: Fatigue life prediction of unidirectional glass fibre/epoxy composite laminate using neural networks. Compos. Struct. 53, 65–71 (2001)

    Article  Google Scholar 

  11. El Kadi, H., Al-Assaf, Y.: Prediction of fatigue life of unidirectional glass fibre/epoxy composite laminae using different neural network paradigms. Compos. Struct. 55, 239–246 (2002)

    Article  Google Scholar 

  12. Vassilopoulos, A.P., Georgopoulos, E.F., Dionysopoulos, V.: Artificial neural networks in spectrum fatigue life prediction of composite materials. Int. J. Fatigue 29, 20–29 (2007)

    Article  CAS  Google Scholar 

  13. Freire Júnior, S.R.C., Neto, A.D.D., de Aquino, E.M.F.: Use of modular networks in the building of constant life diagrams. Int. J. Fatigue 29, 389–396 (2007)

    Article  Google Scholar 

  14. Freire Júnior, S.R.C., Neto, A.D.D., de Aquino, E.M.F.: Building of constant life diagrams of fatigue using artificial neural networks. Int. J. Fatigue 27, 746–751 (2005)

    Article  Google Scholar 

  15. Freire Júnior, S.R.C., Neto, A.D.D., de Aquino, E.M.F.: Comparative study between ANN models and conventional equations in the analysis of fatigue failure of GFRP. Int. J. Fatigue 31, 831–839 (2009)

    Article  Google Scholar 

  16. Adam, T., Fernando, G., Dickson, R.F., Reiter, H., Harris, B.: Fatigue life prediction for hybrid composites. Int. J. Fatigue 11, 233–237 (1989)

    Article  CAS  Google Scholar 

  17. El Kadi, H., Al-Assaf, Y.: The use of neural networks in the prediction of the fatigue life of different composite materials, 16th Int Conf on Compos Mater, Japan, July 8–13, 2007

  18. Al-Assadi, M., El Kadi, H., Deiab, I.M.: Predicting the fatigue life of different composite materials using artificial neural networks. App. Compos. Mater. 17, 1–14 (2010)

    Article  Google Scholar 

  19. Hashin, Z., Rotem, A.: A fatigue failure criterion for fiber reinforced materials. J. Compos. Mater. 7, 448–464 (1973)

    Article  Google Scholar 

  20. Awerbuch, J., Hahn, H.T.: Off-axis fatigue of graphite/epoxy composites. In: Lauraitis, K.N. (ed.) Fatigue of Fibrous Composite Materials, ASTM STP 723, pp. 243–273. Am Soc Test Mater, Philadelphia (1981)

    Chapter  Google Scholar 

  21. El Kadi, H., Ellyin, F.: Effect of stress ratio on the fatigue of unidirectional glass fibre/epoxy composite laminae. Compos 25, 917–924 (1994)

    Article  CAS  Google Scholar 

  22. Philippidis, T.P., Vassilopoulos, A.P.: Complex stress state effect on fatigue life of GRP laminates. Part I, Experimental. Int. J. Fatigue 24, 813–823 (2002)

    Article  Google Scholar 

  23. Kawai, M., Suda, H.: Effects of non-negative mean stress on the off-axis fatigue behavior of unidirectional carbon/epoxy composites at room temperature. J. Compos. Mater. 38, 833–854 (2004)

    Article  CAS  Google Scholar 

  24. Jen, M.-H.R., Lee, C.-H.: Strength and life in thermoplastic composite laminates under static and fatigue loads. Part I: Experimental. Int. J. Fatigue 20, 605–615 (1998)

    Article  CAS  Google Scholar 

  25. Epaarachchi, J.A., Clausen, P.D.: An empirical model for fatigue behavior prediction of glass fiber reinforced plastic composites for various stress ratios and test frequencies. Compos. A 34, 313–326 (2003)

    Article  Google Scholar 

  26. Harris, B., Reiter, H., Adam, T., Dickson, R.F., Fernando, G.: Fatigue behaviour of carbon fibre reinforced plastics. Compos 21, 232–242 (1990)

    Article  CAS  Google Scholar 

  27. Fernando, G., Dickson, R.F., Adam, T., Reiter, H., Harris, B.: Fatigue behavior of hybrid composites: Part 1 Carbon/Kevlar hybrids. J. Mater. Sci. 23, 3732–3743 (1988)

    Article  CAS  Google Scholar 

  28. MATLAB: www.mathworks.com

  29. Al-Assadi, M.: Predicting the fatigue failure of fiber reinforced composite materials using artificial neural networks. MS Thesis. American University of Sharjah (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hany A. El Kadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Assadi, M., El Kadi, H.A. & Deiab, I.M. Using Artificial Neural Networks to Predict the Fatigue Life of Different Composite Materials Including the Stress Ratio Effect. Appl Compos Mater 18, 297–309 (2011). https://doi.org/10.1007/s10443-010-9158-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-010-9158-7

Keywords

Navigation