Applied Composite Materials

, Volume 18, Issue 4, pp 271–282 | Cite as

Studying the Tensile Behaviour of GLARE Laminates: A Finite Element Modelling Approach

  • P. SoltaniEmail author
  • M. Keikhosravy
  • R. H. Oskouei
  • C. Soutis


Numerical simulations based on finite element modelling are increasingly being developed to accurately evaluate the tensile properties of GLARE (GLAss fibre REinforced aluminium laminates). In this study, nonlinear tensile behaviour of GLARE Fibre Metal Laminates (FML) under in-plane loading conditions has been investigated. An appropriate finite element modelling approach has been developed to predict the stress–strain response and deformation behaviour of GLARE laminates using the ANSYS finite element package. The finite element model supports orthotropic material properties for glass/epoxy layer(s) and isotropic properties with the elastic–plastic behaviour for the aluminium layers. The adhesion between adjacent layers has been also properly simulated using cohesive zone modelling. An acceptable agreement was observed between the model predictions and experimental results available in the literature. The proposed model can be used to analyse GLARE laminates in structural applications such as mechanically fastened joints under different mechanical loading conditions.


GLARE Fibre Metal Laminates Finite element modelling Tensile behaviour 



Normal debonding parameter


Tangential debonding parameter


Mixed mode debonding parameter


Young’s (elastic) modulus


Shear modulus


Normal fracture energy/Work done by normal traction


Shear fracture energy/Work done by tangential (shear) traction


Critical fracture energy in mode I


Critical fracture energy in mode II


Normal stiffness


Tangential stiffness


Critical normal/shear traction


Normal traction


Tangential/Shear traction


Failure/complete separation


Normal separation

\( \delta_n^{cr} \)

Critical normal separation

\( \delta_n^f \)

Failure normal separation


Tangential separation

\( \delta_t^{cr} \)

Critical tangential separation/slip distance

\( \delta_t^f \)

Failure tangential separation/slip distance

Δm, λ

Mixed mode dimensionless parameters


Maximum/critical shear stress


Maximum/critical normal stress


  1. 1.
    Gay, D.: Composite Materials Design and Application. CRC (2003)Google Scholar
  2. 2.
    Vinson, J.R., Seirakowski, R.L.: The Behavior of Structures Composed of Composite Materials, 2nd ed. Kluwer (2004)Google Scholar
  3. 3.
    Soutis, C.: Fibre reinforced composites in aircraft construction. Prog. Aerosp. Sci. 41, 143–151 (2005)CrossRefGoogle Scholar
  4. 4.
    Vlot, A.: Glare, History of the Development of a New Aircraft Material. Kluwer (2004)Google Scholar
  5. 5.
    Vermeeren, C.A.J.R.: An historic overview of the development of Fibre Metal Laminates. Appl. Compos. Mater. 10, 189–205 (2003)CrossRefGoogle Scholar
  6. 6.
    Sinke, J.: Development of Fibre Metal Laminates: concurrent multi-scale modeling and testing. J. Mater. Sci. 41, 6777–6788 (2006)CrossRefGoogle Scholar
  7. 7.
    Vlot, A., Vogelesang, L.B., De Vries, T.J.: Towards application of fibre metal laminates in large aircraft. Aircr. Eng. Aerosp. Technol. 71(6), 558–570 (1999)CrossRefGoogle Scholar
  8. 8.
    Vogelesang, L.B., Vlot, A.: Development of fibre metal laminates for advanced aerospace structures. J. Mater. Process. Technol. 103, 1–5 (2000)CrossRefGoogle Scholar
  9. 9.
    Gunnink, J.W., Vlot, A., De Vries, T.J., Van Der Hoeven, W.: GLARE technology development 1997–2000. Appl. Compos. Mater. 9, 201–219 (2002)CrossRefGoogle Scholar
  10. 10.
    Frizzel, R.M., McCarthy, C.T., McCarthy, M.A.: A comparative study of the pin-bearing responses of two glass-based fibre metal laminates. Compos. Sci. Technol. 68, 3314–3321 (2008)CrossRefGoogle Scholar
  11. 11.
    Wu, G., Yang, J.M.: The mechanical behavior of GLARE laminates for aircraft structures. JOM 57, 72–79 (2005)Google Scholar
  12. 12.
    Botelho, E.C., Silva, R.A., Pardini, L.C., Rezende, M.C.: A review on the development and properties of continuous fiber/epoxy/aluminum hybrid composites for aircraft structures. Mater. Res. 9(3), 247–256 (2006)Google Scholar
  13. 13.
    Sadighi, M., Dariushi, S.: An experimental study of the fibre orientation and laminate sequencing effects on mechanical properties of Glare. Proc. Inst. Mech. Eng., G: J. Aerosp. Eng. 222, 1015–1024 (2008)CrossRefGoogle Scholar
  14. 14.
    Vermeeren, C.: Around Glare, A New Aircraft Material in Context. Kluwer (2004)Google Scholar
  15. 15.
    Alderliesten, R.C., Homan, J.J.: Fatigue and damage tolerance issues of Glare in aircraft structures. Int. J. Fatigue 28, 1116–1123 (2006)CrossRefGoogle Scholar
  16. 16.
    Hagenbeek, M., Van Hengel, C., Bosker, O.J., Vermeeren, C.A.J.R.: Static properties of fibre metal laminates. Appl. Compos. Mater. 10, 207–222 (2003)CrossRefGoogle Scholar
  17. 17.
    Woerden, H.J.M., Sinke, J., Hooimeijer, P.A.: Maintenance of GLARE structures and GLARE as riveted or bonded repair material. Appl. Compos. Mater. 10, 307–329 (2003)CrossRefGoogle Scholar
  18. 18.
    Chen, J.L., Sun, C.T.: Modeling of orthotropic elastic–plastic properties of ARALL laminates. Compos. Sci. Technol. 36, 321–337 (1989)CrossRefGoogle Scholar
  19. 19.
    Wu, H.F., Wu, L.L., Slagter, W.J., Verolme, J.L.: Use of rule of mixtures and metal volume fraction for mechanical property predictions of fibre-reinforced aluminum laminates. J. Mater. Sci. 29, 4583–4591 (1994)CrossRefGoogle Scholar
  20. 20.
    Wu, G., Yang, J.M.: Analytical modelling and numerical simulation of the nonlinear deformation of hybrid fibre–metal laminates. Model. Simul. Mater. Sci. Eng. 13, 413–425 (2005)CrossRefGoogle Scholar
  21. 21.
    Military Handbook: Metallic Materials and Elements for Aerospace Vehicle Structures. MIL-HDBK-5H, Washington, D.C. (1998)Google Scholar
  22. 22.
    Preusch, K., Linde, P., Pleitner, J., De Boer H., Carmone, C.: “Modelling of fibre metal laminate shells applied to the inter rivet buckling phenomenon”. European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS) (2004)Google Scholar
  23. 23.
    ANSYS Help System, Mechanical APDL, Structural analysis guide, nonlinear structure analysis, 8.4. Modelling material NonlinearitiesGoogle Scholar
  24. 24.
    ANSYS Element References, SOLID185Google Scholar
  25. 25.
    Camanho, P.P., Davila, G.: Mixed-mode decohesion finite elements for the simulation of delamination in composite materials. NASA/TM-2002-211737 (2002)Google Scholar
  26. 26.
    Liljedahl, C.D.M., Crocombe, A.D., Wahab, M.A., Ashcroft, I.A.: Damage modelling of adhesively bonded joints. Int. J. Ract. 141, 147–161 (2006)CrossRefGoogle Scholar
  27. 27.
    Needleman, A.: An analysis of tensile decohesion along an interface. J. Mech. Phys. Solids 38(3), 289–324 (1990)CrossRefGoogle Scholar
  28. 28.
    Tvergaard, V.: Effect of fibre debonding in a whisker-reinforced metal. Mater. Sci. Eng. A125, 203–213 (1990)Google Scholar
  29. 29.
    Tvergaard, V., Hutchinson, J.W.: The relation between crack growth resistance and fracture process parameters in elastic–plastic solids. J. Mech. Phys. Solids 40(6), 1377–1397 (1992)CrossRefGoogle Scholar
  30. 30.
    Camacho, G.T., Ortiz, M.: Computational modeling of impact damage in brittle materials. Int. J. Solids Struct. 33(20–22), 2899–2938 (1996)CrossRefGoogle Scholar
  31. 31.
    Geubelle, P.H., Baylor, J.: Impact-induced delamination of laminated composites: a 2D simulation. Compos., Part B Eng. 29(5), 589–602 (1998)CrossRefGoogle Scholar
  32. 32.
    Shet, C., Chandra, N.: Analysis of energy balance when using cohesive zone models to simulate fracture. Processes. J. Eng. Mater. Technol. 124, 440–450 (2002)CrossRefGoogle Scholar
  33. 33.
    Yan, Y., Shang, F.: Cohesive zone modeling of interfacial delamination in PZT thin films. Int. J. Solids Struct. 46, 2739–2749 (2009)CrossRefGoogle Scholar
  34. 34.
    Alfano, M., Furgiuele, F., Leonadi, A., Maletta, C., Paulino, G.H.: Fracture analysis of adhesive joints using intrinsic cohesive zone models. Atti del Congresso IGF19, Milano, 2-4 luglio (2007)Google Scholar
  35. 35.
    ANSYS Help System, Mechanical APDL, Theory Reference, 4.13. cohesive zone material modelGoogle Scholar
  36. 36.
    Hogberg, J.L.: Mixed mode cohesive law. Int. J. Frac. 141, 549–559 (2006)CrossRefGoogle Scholar
  37. 37.
    Mohamed, G.F., Soutis, C., Hodzic, A.: Numerical investigation of fibre-metal laminates subjected to blast loadings. 2nd ECCOMAS Thematic Conference on the Mechanical Response of Composites. Imperial College London, UK (2009)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • P. Soltani
    • 1
    Email author
  • M. Keikhosravy
    • 1
    • 2
  • R. H. Oskouei
    • 3
  • C. Soutis
    • 4
  1. 1.Department of Mechanical EngineeringIslamic Azad UniversitySemnanIran
  2. 2.Department of Mechanical EngineeringIslamic Azad UniversityFiruzkoohIran
  3. 3.Department of Mechanical & Aerospace EngineeringMonash UniversityClaytonAustralia
  4. 4.Department of Mechanical Engineering (Aerospace)The University of SheffieldSheffieldUK

Personalised recommendations