Skip to main content

Advertisement

Log in

Effects of Steam Environment on Creep Behavior of Nextel™610/Monazite/Alumina Composite at 1,100°C

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

The tensile creep behavior of a N610™/LaPO4/Al2O3 composite was investigated at 1,100°C in laboratory air and in steam. The composite consists of a porous alumina matrix reinforced with Nextel 610 fibers woven in an eight-harness satin weave fabric and coated with monazite. The tensile stress-strain behavior was investigated and the tensile properties measured at 1,100°C. The addition of monazite coating resulted in ~33% improvement in ultimate tensile strength (UTS) at 1,100°C. Tensile creep behavior was examined for creep stresses in the 32–72 MPa range. Primary and secondary creep regimes were observed in all tests. Minimum creep rate was reached in all tests. In air, creep strains remained below 0.8% and creep strain rates approached 2 × 10−8 s−1. Creep run-out defined as 100 h at creep stress was achieved in all tests conducted in air. The presence of steam accelerated creep rates and significantly reduced creep lifetimes. In steam, creep strain reached 2.25%, and creep strain rate approached 2.6 × 10−6 s−1. In steam, creep run-out was not achieved. The retained strength and modulus of all specimens that achieved run-out were characterized. Comparison with results obtained for N610™/Al2O3 (control) specimens revealed that the use of the monazite coating resulted in considerable improvement in creep resistance at 1,100°C both in air and in steam. Composite microstructure, as well as damage and failure mechanisms were investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zok, F.: Developments in oxide fiber composites. J. Am. Ceram. Soc. 89(11), 3309–3332 (2006)

    Article  CAS  Google Scholar 

  2. Zawada, L.P., Staehler, J., Steel, S.: Consequence of intermittent exposure to moisture and salt fog on the high-temperature fatigue durability of several ceramic-matrix composites. J. Am. Ceram. Soc. 86(8), 1282–1291 (2003)

    Article  CAS  Google Scholar 

  3. Schmidt, S., Beyer, S., Knabe, H., Immich, H., Meistring, R., Gessler, A.: Advanced ceramic matrix composite materials for current and future propulsion technology applications. Acta Astronaut 55, 409–420 (2004)

    Article  ADS  Google Scholar 

  4. Szweda, A., Millard, M.L., Harrison, M.G.: Fiber-reinforced ceramic-matrix composite member and method for making. U. S. Pat. No. 5 601 674, (1997)

  5. Sim, S.M., Kerans, R.J.: Slurry infiltration and 3-D woven composites. Ceram. Eng. Sci. Proc. 13(9-10), 632–641 (1992)

    CAS  Google Scholar 

  6. Moore, E.H., Mah, T., Keller, K.A.: 3D Composite fabrication through matrix slurry pressure infiltration. Ceram. Eng. Sci. Proc. 15(4), 113–120 (1994)

    Article  Google Scholar 

  7. Lange, F., Tu, W., Evans, A.: Processing of damage-tolerant, oxidation-resistant ceramic matrix composites by a precursor infiltration and pyrolysis method. Mater. Sci. Eng. A 195, 145–150 (1995)

    Article  Google Scholar 

  8. Mouchon, E., Colomban, P.: Oxide ceramic matrix/oxide fiber woven fabric composites exhibiting dissipative fracture behavior. Composites 26, 175–182 (1995)

    Article  CAS  Google Scholar 

  9. Tu, W.C., Lange, F.F., Evans, A.G.: Concept for a damage-tolerant ceramic composite with strong interfaces. J. Am. Ceram. Soc. 79(2), 417–424 (1996)

    Article  CAS  Google Scholar 

  10. Evans, A.G., Zok, F.W.: Review: the Physics and mechanics of fiber-reinforced brittle matrix composites. J. Mater. Sci. 29, 3857–3896 (1994)

    Article  ADS  CAS  Google Scholar 

  11. Kerans, R.J., Parthasarathy, T.A.: Crack deflection in ceramic composites and fiber coating design criteria. Composites A 30, 521–524 (1999)

    Article  Google Scholar 

  12. Kerans, R.J., Hay, R.S., Parthasarathy, T.A., Cinibulk, M.K.: Interface design for oxidation-resistant ceramic composites. J. Am. Ceram. Soc. 85(11), 2599–2632 (2002)

    CAS  Google Scholar 

  13. Levi, C.G., Yang, J.Y., Dalgleish, B.J., Zok, F.W., Evans, A.G.: Processing and performance of an all-oxide ceramic composite. J. Am. Ceram. Soc. 81, 2077–2086 (1998)

    CAS  Google Scholar 

  14. Mattoni, M., Yang, J., Levi, C., Zok, F.: Effects of matrix porosity on the mechanical properties of a porous matrix, all-oxide ceramic composite. J. Am. Ceram. Soc. 84(11), 2594–2602 (2003)

    Article  Google Scholar 

  15. Zok, F.W., Levi, C.G.: Mechanical properties of porous-matrix ceramic composites. Adv. Eng. Mater. 3(1–2), 15–23 (2001)

    Article  Google Scholar 

  16. Morgan, P.E.D., Marshall, D.B.: Ceramic composites of monazite and alumina. J. Am. Ceram. Soc. 78(6), 1553–1563 (1995)

    Article  CAS  Google Scholar 

  17. Morgan, P.E.D., Marshall, D.B.: Functional interfaces for oxide/oxide composites. Mater. Sci. Eng. A162, 15–25 (1993)

    CAS  Google Scholar 

  18. Morgan, P.E.D., Marshall, D.B., Housley, R.M.: High-temperature stability of monazite-alumina composites. Mater. Sci. Eng. A195, 215–222 (1995)

    CAS  Google Scholar 

  19. Chawla, K.K., Liu, H., Janczak-Rusch, J., Sambasivan, S.: Microstructure and properties of monazite (LaPO4) coated saphikon fiber/alumina matrix composites. J. Eur. Cer. Soc 20, 551–559 (2000)

    Article  CAS  Google Scholar 

  20. Cazzato, A., Colby, M., Daws, D., Davis, J., Morgan, P., Porter, J., Butner, S., Jurf, R.: Monazite interface coatings in polymer and sol-gel derived ceramic matrix composites. Ceram. Eng. Sci. Proc. 18(3), 269–278 (1997)

    CAS  Google Scholar 

  21. Kuo, D.H., Kriven, W.M., Mackin, T.J.: Control of interfacial properties through fiber coatings: monazite coatings in oxide-oxide composites. J. Am. Ceram. Soc. 80(12), 2987–2996 (1997)

    Article  CAS  Google Scholar 

  22. Boakye, E.E., Hay, R.S., Petry, M.D.: Continuous coating of oxide fiber tows using liquid precursors: monazite coatings on Nextel 720. J. Am. Ceram. Soc. 82(9), 2321–2331 (1999)

    CAS  Google Scholar 

  23. Hay, R.S.: Method for coating continuous tows. U. S. Pat. No. 5 164 229 (1992)

  24. Boakye, E.E., Petry, M.D., Hay, R.S., Douglas, L.M.: Monazite coatings on Nextel 720, 610, and Tyranno-SA fiber tows: effects of precursors on fiber strength. Ceram. Eng. Sci. Proc. 21(4), 229–236 (2000)

    Article  CAS  Google Scholar 

  25. Fair, G.E., Hay, R.S., Boakye, E.E.: Precipitation coating of monazite on woven ceramic fibers: I. Feasibility. J. Am. Ceram. Soc. 90(2), 448–455 (2007)

    Article  CAS  Google Scholar 

  26. Fair, G.E., Hay, R.S., Boakye, E.E.: Precipitation coating of monazite on woven ceramic fibers: II. Effect of processing conditions on coating morphology and strength retention of Nextel™ 610 and 720 fibers. J. Am. Ceram. Soc 91(5), 1508–1516 (2008)

    Article  CAS  Google Scholar 

  27. Lee, S.S., Zawada, L.P., Staehler, J., Folsom, C.A.: Mechanical behavior and high-temperature performance of a woven Nicalon™/Si-N-C ceramic-matrix composite. J. Am. Ceram. Soc. 81(7), 1797–1811 (1998)

    Article  CAS  Google Scholar 

  28. Zawada, L.P., Hay, R.S., Lee, S.S., Staehler, J.: Characterization and high-temperature mechanical behavior of an oxide/oxide composite. J. Am. Ceram. Soc. 86(6), 981–990 (2003)

    Article  CAS  Google Scholar 

  29. Ruggles-Wrenn, M.B., Mall, S., Eber, C.A., Harlan, L.B.: Effects of steam environment on high-temperature mechanical behavior of Nextel™720/alumina (N720/A) continuous fiber ceramic composite. Composites A 37(11), 2029–2040 (2006)

    Article  CAS  Google Scholar 

  30. Mehrman, J.M., Ruggles-Wrenn, M.B., Baek, S.S.: Influence of hold times on the elevated-temperature fatigue behavior of an oxide-oxide ceramic composite in air and in steam environment. Comp. Sci. Tech. 67, 1425–1438 (2007)

    Article  CAS  Google Scholar 

  31. Keller, K.A., Mah, T.I., Parthasarathy, T.A., Boakye, E.E., Mogilevsky, P., Cinibulk, M.K.: Effectiveness of monazite coatings in oxide/oxide composites after long-term exposure at high temperature. J. Am. Ceram. Soc. 86(2), 325–332 (2003)

    Article  CAS  Google Scholar 

  32. Ruggles-Wrenn, M.B., Musil, S.S., Mall, S., Keller, K.A.: Creep Behavior of Nextel™610/ monazite/alumina composite at elevated temperatures. Comp. Sci. Tech. 66(13), 2089–2099 (2006)

    Article  CAS  Google Scholar 

  33. Wilson, D.M., Visser, L.R.: High performance oxide fibers for metal and ceramic composites. Composites: Part A 32, 1143–1153 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina B. Ruggles-Wrenn.

Additional information

The views expressed are those of the authors and do not reflect the official policy or position of the United States Air Force, Department of Defense or the U. S. Government.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruggles-Wrenn, M.B., Yeleser, T., Fair, G.E. et al. Effects of Steam Environment on Creep Behavior of Nextel™610/Monazite/Alumina Composite at 1,100°C. Appl Compos Mater 16, 379–392 (2009). https://doi.org/10.1007/s10443-009-9105-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-009-9105-7

Keywords

Navigation