Skip to main content
Log in

Curing Deformation Analysis for the Composite T-shaped Integrated Structures

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

Curing deformation of the T-shaped integrated structures is discussed in this paper. The mechanism of the deformation is analyzed for the T-shaped integrated structures, and a simple mathematical model for the deformation of the T-shaped integrated structures is established. Compare the mathematical model with the finite element analysis, the results show a good agreement. From the simple mathematical model, it can be seen that both cure shrinkage and thermal expansion are the major factors to produce the deformation of the typical T-shaped integrated structures and the tool-part contraction is the secondary factor. Therefore, it is important for the T-shaped integrated structures to select suitable fabrication process and the appropriate tool. The different geometry and material parameters of the T-shaped integrated structures are studied, and then a regression model is established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Mahfuz, H., Prasun, M., Mrinal, S., et al.: Integral manufacturing of composite skin-stringer assembly and their stability analysis. Appl. Compos. Mater. 11, 155–171 (2004). doi:10.1023/B:ACMA.0000026585.37973.c8

    Article  CAS  Google Scholar 

  2. Wisnom, M.R., Gigliotti, M., Ersoy, N., Campbell, M., Potter, K.D.: Mechanisms generating residual stresses and distortion during manufacture of polymer-matrix composite structures. Compos. Part A 37(4), 522–529 (2006). doi:10.1016/j.compositesa.2005.05.019

    Article  Google Scholar 

  3. Fernlund, G., Rahman, N., Courdji, R., Bresslauer, M., Poursartip, A., Willden, K., Nelson, K.: Experimental and numerical study of the effect of cure cycle, tool surface, geometry, and lay-up on the dimensional fidelity of autoclave-processed composite parts. Compos. Part A 33(3), 341–351 (2002). doi:10.1016/S1359-835X(01)00123-3

    Article  Google Scholar 

  4. Bogetti, T.A.: Process-induced stress and deformation in thick-section thermoset composite laminates. J. Compos. Mater. 26(5), 626–660 (1992). doi:10.1177/002199839202600502

    Article  CAS  Google Scholar 

  5. Radford, D.W., Rennick, T.S.: Separating sources of manufacturing distortion in laminated composites. J. Reinf. Plast.Comp. 19(8), 621–641 (2000). doi:10.1106/CRMP-ARE5-GVPP-0Y7N

    Article  CAS  Google Scholar 

  6. Fernlund, G.: Spring-in of angled sandwich panels. Compos. Sci. Technol. 65, 317–323 (2005). doi:10.1016/j.compscitech.2004.08.001

    Article  Google Scholar 

  7. Albert, C., Fernlund, G.: Spring-in and warpage of angled composite laminates. Compos. Sci. Technol. 62, 1895–1912 (2002). doi:10.1016/S0266-3538(02)00105-7

    Article  CAS  Google Scholar 

  8. Huang, C.K., Yang, S.Y.: Warping in advanced composite tools with varying angles and radii. Compos. Part A 28, 891–893 (1997). doi:10.1016/S1359-835X(97)00045-6

    Article  Google Scholar 

  9. Huang, C.K., Yang, S.Y.: Study on accuracy of angled advanced composite tools. Mater. Manuf. Process. 12(3), 473–486 (1997). doi:10.1080/10426919708935158

    Article  CAS  Google Scholar 

  10. Jung, W.K., Chu, W.S., Ahn, S.H.: Measurement and compensation of spring-back of a hybrid composite beam. J. Compos. Mater. 41(7), 851–864 (2007). doi:10.1177/0021998306067064

    Article  CAS  Google Scholar 

  11. Twigg, G., Poursartip, A., Fernlund, G.: Tool-part interaction in composites processing. Part I: experimental investigation and analytical model. Compos. Part A 35, 121–133 (2004). doi:10.1016/S1359-835X(03)00131-3

    Article  Google Scholar 

  12. Wang, J., Kelly, D.: Finite element analysis of temperature induced stresses and deformations of polymer composite components. J. Compos. Mater. 34(17), 1456–1471 (2000). doi:10.1106/76G7-X9QM-C5JF-E4D5

    Article  CAS  Google Scholar 

  13. Fernlund, G., Osooly, A., Poursartip, A., et al.: Finite element based prediction of processed-induced deformation of autoclaved composite structures using 2D process analysis and 3D structural analysis. Compos. Struct. 62, 223–234 (2003). doi:10.1016/S0263-8223(03)00117-X

    Article  Google Scholar 

  14. Johnston, A., Vaziri, R., Poursartip, A.: A plane strain model for process-induced deformation of laminated composite structures. J. Compos. Mater. 35(16), 1435–1469 (2001)

    Google Scholar 

  15. Fernlund, G., Floyd, A.: Process analysis and tool compensation for curved composite L-angles. The 6th Canadian international composites conference p, 14–17 (2007)

  16. Dong, C.S., Zhang, C., Liang, Z.Y., Wang, B.G.: Dimension variation prediction for composites with finite element analysis and regression modeling. Compos. Part A 35, 735–746 (2004). doi:10.1016/j.compositesa.2003.12.005

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (10772094).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XueFeng Yao.

Appendix: Continuous Fiber Micromechanics Model

Appendix: Continuous Fiber Micromechanics Model

In the equations presented below, the subscripts 1, 2 and 3 refer to the directions in the principal coordinate system of the lamina. Subscripts m, f and c correspond to the matrix(resin),fiber and composite properties, respectively. Fiber volume fraction of the lamina is denoted as V f and k is the isotropic plane strain bulk modulus defined by

$$\left\{ \begin{aligned}& k_m = \frac{{E_m }}{{3\left( {1 - 2v_m } \right)}} \\& k_{2f} = \frac{{E_{2f} }}{{2\left( {1 - v_{23f} - 2v_{12f}^2 \frac{{E_{2f} }}{{E_{1f} }}} \right)}} \\ \end{aligned} \right.$$
(A.1)

The following equations define the transversely isotropic engineering constants of the lamina. The longitudinal Young’s modulus:

$$E_{1c} = E_{1f} V_f + E_m \left( {1 - V_f } \right) + \frac{{4\left( {v_m - v_{12f} } \right)k_m k_{2f} G_m \left( {1 - V_f } \right)V_f }}{{\left( {k_{2f} + G_m } \right)k_m + \left( {k_{2f} - k_m } \right)G_m V_f }}$$
(A.2)

The major Poisson’s ration:

$$v_{12c} = v_{13c} = v_{12f} V_f + v_m \left( {1 - V_f } \right) + \frac{{\left( {v_m - v_{12f} } \right)\left( {k_m - k_{2f} } \right)G_m \left( {1 - V_f } \right)V_f }}{{\left( {k_{2f} + G_m } \right)k_m + \left( {k_{2f} - k_m } \right)G_m V_f }}$$
(A.3)

The in-plane shear modulus:

$$G_{12c} = G_{13c} = G_m \frac{{\left( {G_{12f} + G_m } \right) + \left( {G_{12f} - G_m } \right)V_f }}{{\left( {G_{12f} + G_m } \right) - \left( {G_{12f} - G_m } \right)V_f }}$$
(A.4)

The transverse shear modulus:

$$G_{23c} = \frac{{G_m \left[ {k_m \left( {G_m + G_{23f} } \right) + 2G_{23f} G_m + k_m \left( {G_{23f} - G_m } \right)V_f } \right]}}{{k_m \left( {G_m + G_{23f} } \right) + 2G_{23f} G_m - \left( {k_m + 2G_m } \right)\left( {G_{23f} - G_m } \right)V_f }}$$
(A.5)

The transverse Young’s modulus:

$$E_{2c} = E_{3c} = \frac{1}{{\left( {\frac{1}{{4K_{2c} }}} \right) + \left( {\frac{1}{{4G_{23c} }}} \right) + \left( {\frac{{v_{12c}^2 }}{{E_{1c} }}} \right)}}$$
(A.6)

where K 2c is the effective plane strain bulk modulus of the composite given by

$$K_{2c} = \frac{{\left( {k_{2f} + G_m } \right)k_m + \left( {k_{2f} - k_m } \right)G_m V_f }}{{\left( {K_{2f} + G_m } \right) - \left( {k_{2f} - k_m } \right)V_f }}$$
(A.7)

The transverse Poisson’s ration:

$$v_{23c} = \frac{{2E_{1c} K_{2c} - E_{1c} E_{2c} - 4v_{12c}^2 K_{2c} E_{2c} }}{{2E_{1c} K_{2c} }}$$
(A.8)

The following equations define the transversely isotropic thermal expansion coefficient of the lamina. The longitudinal direction thermal expansion coefficient:

$$CTE_{1c} = \frac{{CTE_{1f} E_{1f} V_f + CTE_{1m} E_m \left( {1 - V_f } \right)}}{{E_{1f} V_f + E_m \left( {1 - V_f } \right)}}$$
(A.9)

The transverse direction thermal expansion coefficient:

$$\begin{array}{*{20}l} {{CTE_{{2c}} = CTE_{{3c}} } \hfill} \\ {{ = {\left( {CTE_{{2f}} + v_{{12f}} CTE_{{1f}} } \right)}V_{f} + CTE_{m} {\left( {1 + v_{m} } \right)}{\left( {1 - V_{f} } \right)} - {\left[ {v_{{12f}} V_{f} + v_{m} {\left( {1 - V_{f} } \right)}} \right]}CTE_{{1c}} } \hfill} \\ \end{array} $$
(A.10)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Yao, X., Liu, Y. et al. Curing Deformation Analysis for the Composite T-shaped Integrated Structures. Appl Compos Mater 15, 207–225 (2008). https://doi.org/10.1007/s10443-008-9068-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-008-9068-0

Keywords

Navigation