Skip to main content

Advertisement

Log in

The Effects of Thermal Cycles on the Impact Fatigue Properties of Thermoplastic Matrix Composites

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

The effects of thermal cycles on the impact fatigue properties of unidirectional carbon fibre reinforced polyetherimide (PEI) matrix composites were investigated. During the thermal cycles, samples were immersed into boiling water (100 °C) and subsequently to ice water (0 °C), 50, 200 and 500 times. The changes in viscoelastic properties of the composites were investigated by means of dynamic mechanical thermal analyzer (DMTA). At the second step, thermal cycled composites were subjected to repeated impact loadings, with different impact energies. Instrumented impact test results were presented as a function of force, energy, deformation during the experiments. The scanning electron microscope (SEM) studies were done in order to understand the morphology of fractured samples after impact fatigue loading. The number of thermal cycles and applied impact energy of the hammer are found to have a great importance on the fracture morphology of repeatedly impacted material, as expected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Gómez-del Río, T., Zaera, R., Barbero, E., Navarro, C.: Damage in CFRPs due to low velocity impact at low temperature. Compos. Part B Eng. 36, 41–50 (2005). doi:10.1016/j.compositesb.2004.04.003

    Article  Google Scholar 

  2. Tai, N.H., Yip, M.C., Lin, J.L.: Effects of low-energy impact on the fatigue behavior of carbon/epoxy composites. Compos. Sci. Technol. 58, 1–8 (1998). doi:10.1016/S0266-3538(97)00075-4

    Article  CAS  Google Scholar 

  3. De Morais, W.A., Monterio, S.N., d’Almeida, J.R.M.: Evaluation of repeated low energy impact damage in carbon–epoxy composite materials. Compos. Struct. 67, 307–315 (2005). doi:10.1016/j.compstruct.2004.01.012

    Article  Google Scholar 

  4. Tai, N.H., Yip, M.C., Tseng, C.M.: Influences of thermal cycling and low-energy impact on the fatigue behavior of carbon/PEEK laminates. Compos. Part B Eng. 30, 849–865 (1999). doi:10.1016/S1359-8368(99)00048-7

    Article  Google Scholar 

  5. Bankim, ChR.: Effect of thermal shock on interlaminar strength of thermally aged glass fibre reinforced epoxy composites. J. Appl. Polym. Sci. 100, 2062–2066 (2005). doi:10.1002/app.23019

    Google Scholar 

  6. Sınmazçelik, T., Arıcı, A.A., Günay, V.: Impact–fatigue behaviour of unidirectional carbon fibre reinforced polyetherimide (PEI) composites. J. Mater. Sci. 41, 6237–6244 (2006). doi:10.1007/s10853-006-0720-5

    Article  Google Scholar 

  7. Akay, M., Spratt, G.R., Meenan, B.: The effects of long-term exposure to high temperatures on the ILSS and impact performance of carbon fibre reinforced bismaleimide. Compos. Sci. Technol. 63, 1053–1059 (2003). doi:10.1016/S0266-3538(03)00018-6

    Article  CAS  Google Scholar 

  8. Stevens, M.R., Todd, R., Papakyriacou, M.: The effect of thermal cycling on the properties of a carbon fibre reinforced magnesium composite. Mater. Sci. Eng. A. 397, 249–256 (2005)

    Article  Google Scholar 

  9. Bergeret, A., Pires, I., Foule, M.P., Abadie, B., Ferry, L., Crespy, A.: The hygrothermal behaviour of glass–fibre-reinforced thermoplastic composites: a prediction of the composite lifetime. Polym. Test. 20, 753–763 (2001). doi:10.1016/S0142-9418(01)00030-7

    Article  CAS  Google Scholar 

  10. Boinard, E., Pethrick, R.A., MacFarlane, C.J.: The influence of thermal history on the dynamic mechanical and dielectric studies of polyetheretherketone exposed water and brine. Polymer 41, 1063–1066 (2000). doi:10.1016/S0032-3861(99)00259-1

    Article  CAS  Google Scholar 

  11. Biernacki, K., Szyszkowski, W., Yannacopoulos, S.: An experimental study of large scale model composite materials under thermal fatigue. Compos. Part A Appl. Sci. Manuf. 30, 1027–1034 (1999)

    Article  Google Scholar 

  12. Bismarck, A., Hofmeier, M., Dörner, G.: Effect of hot water immersion on the performance of carbon reinforced unidirectional PEEK composites: stress rupture under end-loaded bending. Compos. Part A Appl. Sci. Manuf. 38, 407–426 (2007)

    Article  Google Scholar 

  13. Imielinska, K., Guillaumat, L.: The effect of water immersion ageing on low velocity impact behaviour of woven aramid–glass fibre/ epoxy composites. Compos. Sci. Technol. 64, 2271–2278 (2004). doi:10.1016/j.compscitech.2004.03.002

    Article  CAS  Google Scholar 

  14. Ray, B.C.: Thermal shock on interfacial adhesion of thermally conditioned glass fibre/epoxy composites. Mater. Lett. 58, 2175–2177 (2004). doi:10.1016/j.matlet.2004.01.035

    Article  CAS  Google Scholar 

  15. Bullions, T.A., McGrath, J.E., Loos, A.C.: Thermal-oxidative ageing effects on the properties of a carbon fibre-reinforced phenylethynyl-terminated polyetherimide. Compos. Sci. Technol. 63, 1737–1748 (2003). doi:10.1016/S0266-3538(03)00089-7

    Article  CAS  Google Scholar 

  16. Salehi-Khojin, A., Mahinfallah, M., Bashirzadeh, R., Freeman, B.: Temperature effects on Kevlar/Hybrid and carbon fibre composite sandwiches under impact loading. Compos. Struct. 78, 197–206 (2007). doi:10.1016/j.compstruct.2005.09.005

    Article  Google Scholar 

  17. Kobayashi, S., Terada, K., Ogihara, S., Takeda, N.: Damage-mechanics analysis of matrix cracking in cross-ply CFRP laminates under thermal fatigue. Compos. Sci. Technol. 61, 1735–1742 (2001). doi:10.1016/S0266-3538(01)00077-X

    Article  CAS  Google Scholar 

  18. Baschek, G., Hartwig, G., Zahradnik, F.: Effects of water absorption in polymers at low and high temperatures. Polymer 40, 3433–3441 (1999). doi:10.1016/S0032-3861(98)00560-6

    Article  CAS  Google Scholar 

  19. Hancox, N.L.: Thermal effects on polymer matrix composites: part 1. Thermal cycling. Mater. Des. 19, 85–91 (1998)

    CAS  Google Scholar 

  20. Vina, J., Castrillo, M.A., Argüelles, A., Vina, I.: Effects of natural and accelerated ageing on the static and dynamic behavior of glass–fibre-reinforced polyetherimide. J. Mater. Sci. Lett. 17, 1711–1713 (1998). doi:10.1023/A:1006666916778

    Article  CAS  Google Scholar 

  21. Srivastava, V.K.: Influence of water immersion on mechanical properties of quasi-isotropic glass fibre reinforced epoxy vinylester resin composites. Mater. Sci. Eng. A 263, 56–63 (1999)

    Article  Google Scholar 

  22. Tai, N.H., Yu, H.C.: Effects of low-energy impact and thermal cycling loadings on fatigue behavior of the quasi-isotropic carbon/epoxy composites. J. Polym. Res. 5, 143–151 (1998). doi:10.1007/s10965-006-0050-y

    Article  CAS  Google Scholar 

  23. Parlevliet, P.P., Bersee, H.E.N., Beukers, A.: Residual stresses in thermoplastic composites—a study of the literature—part I: formation of residual stresses. Compos. Part A Appl. Sci. Manuf. 37, 1847–1857 (2006). doi:10.1016/j.compositesa.2005.12.025

    Article  Google Scholar 

  24. Parlevliet, P.P., Bersee, H.E.N., Beukers, A.: Residual stresses in thermoplastic composites—a study of the literature—part III: effects of thermal residual stresses. Compos. Part A Appl. Sci. Manuf. 38, 1581–1596 (2007). doi:10.1016/j.compositesa.2006.12.005

    Article  Google Scholar 

  25. Sinmazcelik, T., Arıcı, A.: Thermal cycles effect on interlaminar shear strength (ILSS) and impact behaviour of carbon/PEI composites. J. Mater. Sci. 41, 1233–1241 (2006). doi:10.1007/s10853-005-3661-5

    Article  CAS  Google Scholar 

  26. Earl, J.S., Shenoi, R.A.: Hygrothermal ageing effects on FRP laminate and structural foam materials. Compos. Part A Appl. Sci. Manuf. 35, 1237–1247 (2004)

    Google Scholar 

  27. Xu, S.: Evaluating thermal and mechanical properties of electrically conductive adhesives for electronic applications. Thesis, Faculty of the Virginia Polytechnic Institute and State University, Blacksburg, Virginia (2001)

  28. Hiltz, J.A., Kuzak, S.G., Waitkus, P.A.: Effect of thermal exposure on the properties of phenolic composites: dynamic mechanical analysis. J. Appl. Polym. Sci. 79, 385–395 (2001). doi:10.1002/1097-4628(20010118)79:3<385::AID-APP10>3.0.CO;2-J

    Article  CAS  Google Scholar 

  29. Georget, D.M.R., Smith, A.C., Waldron, K.W.: Low moisture thermo-mechanical properties of carrot cell wall components. Thermochim. Acta 315, 51–60 (1998). doi:10.1016/S0040-6031(98)00276-7

    Article  CAS  Google Scholar 

  30. Çoban, O., Bora, M.Ö., Sınmazçelik, T., Cürgül, İ., Günay, V.: Fracture morphology and deformation characteristics of repeatedly impacted thermoplastic matrix composites. Mater. Des. doi:10.1016/j.matdes.2008.05.042

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamer Sınmazçelik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sınmazçelik, T., Çoban, O., Bora, M.Ö. et al. The Effects of Thermal Cycles on the Impact Fatigue Properties of Thermoplastic Matrix Composites. Appl Compos Mater 15, 99–113 (2008). https://doi.org/10.1007/s10443-008-9060-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-008-9060-8

Keywords

Navigation