Applied Composite Materials

, Volume 14, Issue 5–6, pp 363–377 | Cite as

Experimental and Numerical Analysis of Composite Folded Sandwich Core Structures Under Compression

  • S. Heimbs
  • P. Middendorf
  • S. Kilchert
  • A. F. Johnson
  • M. Maier
Article

Abstract

The characterisation of the mechanical behaviour of folded core structures for advanced sandwich composites under flatwise compression load using a virtual testing approach is presented. In this context dynamic compression test simulations with the explicit solvers PAM-CRASH and LS-DYNA are compared to experimental data of two different folded core structures made of aramid paper and carbon fibre-reinforced plastic (CFRP). The focus of the investigations is the constitutive modelling of the cell wall material, the consideration of imperfections and the representation of cell wall buckling, folding or crushing phenomena. The consistency of the numerical results shows that this can be a promising and efficient approach for the determination of the effective mechanical properties and a cell geometry optimisation of folded core structures.

Keywords

Folded core Sandwich structures Compression testing Numerical simulation 

References

  1. 1.
    Rückert, C.: Double skin composite fuselage design—materials & process approaches for test article realisation. In: SAMPE Europe 25th International Conference, Paris, France, 30 March–1 April 2004, pp. 438–443 (2004)Google Scholar
  2. 2.
    Kolesnikov, B.Y., Herbeck, L.: Carbon fiber composite airplane fuselage: concept and analysis. Paper presented at the ILA International Conference, Berlin, Germany, 11–12 May 2004Google Scholar
  3. 3.
    Kolax, M.: Concept and technology: advanced composite fuselage structures. JEC Composites 10, (6/7), 31–33 (2004)Google Scholar
  4. 4.
    Kehrle, R., Kolax, M.: Sandwich structures for advanced next generation fuselage concepts. In: SAMPE Europe Technical Conference, Toulouse, France, 13–14 September 2006, pp. 11–16 (2006)Google Scholar
  5. 5.
    Aktay, L., Johnson, A.F., Holzapfel, M.: Prediction of impact damage on sandwich composite panels. Comput. Mater. Sci. 32, 252–260 (2005)CrossRefGoogle Scholar
  6. 6.
    Aminanda, Y., Castanié, B., Barrau, J.J., Thevenet, P.: Experimental analysis and modeling of the crushing of honeycomb cores. Appl. Compos. Mater. 12, 213–227 (2005)CrossRefGoogle Scholar
  7. 7.
    Hachenberg, D., Mudra, C., Nguyen, M.: Folded structures — an alternative sandwich core material for future aircraft concepts. Paper presented at Deutscher Luft- und Raumfahrt Kongress, Munich, Germany, 17–20 November 2003Google Scholar
  8. 8.
    Nguyen, M.Q., Jacombs, S.S., Thomson, R.S., Hachenberg, D., Scott, M.L.: Simulation of impact on sandwich structures. Compos. Struct. 67, 217–227 (2005)CrossRefGoogle Scholar
  9. 9.
    Johnson, A.F., Pentecôte, N.: Modelling impact damage in double-walled composite structures. In: Onate E., Owen D.R.J. (eds.), Proceedings of the 8th International Conference on Computational Plasticity, COMPLAS VIII, Barcelona, Spain, 5–8 September 2005Google Scholar
  10. 10.
    Heimbs, S., Mehrens, T., Middendorf, P., Maier, M., Schumacher, A.: Numerical determination of the nonlinear effective mechanical properties of folded core structures for aircraft sandwich panels. Paper presented at the 6th LS-DYNA Users Conference, Gothenburg, Sweden, 29–30 May 2007Google Scholar
  11. 11.
    Drechsler, K., Kehrle, R.: Manufacturing of folded core-structures for technical applications. In: SAMPE Europe 25th International Conference, Paris, France, 30 March–1 April 2004, pp. 508–513 (2004)Google Scholar
  12. 12.
    Drechsler, K., Kehrle, R., Klett, Y., Thorsteinsson, E.: Faltwabenkerne für multifunktionale Leichtbaustrukturen. Paper presented at 2nd MATERIALICA Composites Congress “Composites in Automotive & Aerospace”, Munich, Germany, 11–12 October 2006Google Scholar
  13. 13.
    Khaliulin, V.I., Dvoyeglazov, I.V.: On technological problems of fabrication of relief designs by isometric transformations of thin sheet. Trans. Nanjing Univ. Aeronaut. Astronaut. 18, (1), 11–16 (2001)Google Scholar
  14. 14.
    Heimbs, S., Schmeer, S., Middendorf, P., Maier, M.: Strain rate effects in phenolic composites and phenolic-impregnated honeycomb structures. Compos. Sci. Technol. 67, (13), 2827–2837 (2007)CrossRefGoogle Scholar
  15. 15.
    Schweizerhof, K., Weimar, K., Münz, T., Rottner, T.: Crashworthiness analysis with enhanced composite material models in LS-DYNA—merits and limits. Paper presented at 16th CADFEM User`s Meeting, Bad Neuenahr-Ahrweiler, Germany, 7–9 October 1998Google Scholar
  16. 16.
    Pein, M., Krause, D., Heimbs, S., Middendorf, P.: Innovative energy-absorbing concept for aircraft cabin interior. In: Von Estorff O. (ed.), International Workshop on Aircraft System Technologies, AST 2007, Hamburg, Germany, 29–30 March 2007, pp. 375–384 (2007)Google Scholar
  17. 17.
    Aktay, L., Johnson, A. F., Kröplin, B.H.: Numerical modelling of honeycomb core crush behaviour. Eng. Fract. Mech., in press, 2008 (DOI 10.1016/j.engfracmech.2007.03.008)
  18. 18.
    Carruthers, J.J.: Some aspects of the energy absorption of composite materials. Ph.D. thesis, The University of Sheffield, UK (1997)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • S. Heimbs
    • 1
  • P. Middendorf
    • 1
  • S. Kilchert
    • 2
  • A. F. Johnson
    • 2
  • M. Maier
    • 3
  1. 1.EADS Innovation WorksMunichGermany
  2. 2.German Aerospace Center (DLR)Institute of Structures and DesignStuttgartGermany
  3. 3.Institute for Composite Materials (IVW)Kaiserslautern University of TechnologyKaiserslauternGermany

Personalised recommendations