Skip to main content
Log in

Fitness Beats Truth in the Evolution of Perception

  • Regular Article
  • Published:
Acta Biotheoretica Aims and scope Submit manuscript

Abstract

Does natural selection favor veridical percepts—those that accurately (if not exhaustively) depict objective reality? Perceptual and cognitive scientists standardly claim that it does. Here we formalize this claim using the tools of evolutionary game theory and Bayesian decision theory. We state and prove the “Fitness-Beats-Truth (FBT) Theorem” which shows that the claim is false: If one starts with the assumption that perception involves inference to states of the objective world, then the FBT Theorem shows that a strategy that simply seeks to maximize expected-fitness payoff, with no attempt to estimate the “true” world state, does consistently better. More precisely, the FBT Theorem provides a quantitative measure of the extent to which the fitness-only strategy dominates the truth strategy, and of how this dominance increases with the size of the perceptual space. The FBT Theorem supports the Interface Theory of Perception (e.g. Hoffman et al. in Psychon Bull Rev https://doi.org/10.3758/s13423-015-0890-8, 2015), which proposes that our perceptual systems have evolved to provide a species-specific interface to guide adaptive behavior, and not to provide a veridical representation of objective reality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. From a purely mathematical point of view, the set of monotonic fitness functions is an extremely small subset of the set of all functions on a given domain. That is to say, there are “many more” non-monotonic functions than monotonic ones; hence a random sampling of fitness functions is much more likely to yield a non-monotonic one.

  2. The value of N at which this happens depends upon the payoff matrix, but can be arbitrarily large over the set of all payoff matrices satisfying \(a>c\) and \(b>d\).

  3. In this case, all the integral signs can be replaced by summations.

  4. An example is a closed rectangle in some k-dimensional Euclidean space, such as the unit interval [0, 1] in one dimension, or the unit square in two.

  5. In the general case, the perceptual map may have dispersion (or noise), and is mathematically expressed as a Markovian kernel \(p:W\times \mathcal{X}\to \left[\mathrm{0,1}\right].\) That is, for every element w in W, the kernel p assigns a probability distribution on X (hence it assigns a probability value to each measurable subset of X). Because X is finite and all of its subsets are measurable, here the kernel may be viewed simply as assigning, for every element w in W, a probability value to each element of X.

  6. That is, \({\mathbb{P}}(\mathrm{d}w | x)=g(w\left|x\right)\mathrm{d}w.\)

  7. See also the Invention of Space–Time Theorem in Hoffman et al. (2015).

References

  • Adelson EH, Pentland A (1996) The perception of shading and reflectance. In: Knill D, Richards W (eds) Perception as Bayesian Inference. Cambridge University Press, New York, NY, pp 409–423

    Chapter  Google Scholar 

  • Chemero A (2009) Radical embodied cognitive science. MIT Press, Cambridge, MA

    Book  Google Scholar 

  • Feldman J (2013) Tuning your priors to the world. Top Cogn Sci 5:13–34

    Article  Google Scholar 

  • Fischer J, Whitney D (2014) Serial dependence in visual perception. Nat Neurosci 17:738–743

    Article  Google Scholar 

  • Geisler WS, Diehl RL (2003) A Bayesian approach to the evolution of perceptual and cognitive systems. Cogn Sci 27:379–402

    Article  Google Scholar 

  • Geisler WS, Perry JS, Super BJ, Gallogly DP (2001) Edge co-occurrence in natural images predicts contour grouping performance. Vis Res 41(6):711–724

    Article  Google Scholar 

  • Hofbauer J, Sigmund K (1998) Evolutionary games and population dynamics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Hoffman DD (2009) The interface theory of perception. In: Dickinson S, Tarr M, Leonardis A, Schiele B (eds) Object categorization: computer and human vision perspectives. Cambridge University Press, New York, pp 148–165

    Chapter  Google Scholar 

  • Hoffman DD (2019) The case against reality: Why evolution hid the truth from our eyes. W.W. Norton, New York

    Google Scholar 

  • Hoffman DD, Prakash C (2014) Objects of consciousness. Front Psychol 5:577. https://doi.org/10.3389/fpsyg.2014.00577

    Article  Google Scholar 

  • Hoffman DD, Singh M (2012) Computational evolutionary perception. Perception 41:1073–1091

    Article  Google Scholar 

  • Hoffman DD, Singh M, Mark JT (2013) Does natural selection favor true perceptions? Hum Vis Electron Imaging XVIII SPIE 18:865104. https://doi.org/10.1117/12.2011609

    Article  Google Scholar 

  • Hoffman DD, Singh M, Prakash C (2015) Interface theory of perception. Psychon Bull Rev. https://doi.org/10.3758/s13423-015-0890-8

    Article  Google Scholar 

  • Kleffner D, Ramachandran V (1992) On the perception of shape from shading. Percept Psychophys 52:18–36

    Article  Google Scholar 

  • Knill D, Richards W (1996) Perception as Bayesian inference. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Koenderink JJ (2011) Vision as a user interface. Hum Vis Electron Imaging XVIII SPIE. https://doi.org/10.1117/12.881671

    Article  Google Scholar 

  • Koenderink JJ (2013) World, environment, umwelt, and inner-world: a biological perspective on visual awareness. Hum Vis Electron Imaging XVIII SPIE. https://doi.org/10.1117/12.2011874

    Article  Google Scholar 

  • Koenderink JJ (2014) The all-seeing eye? Perception 43:1–6

    Article  Google Scholar 

  • Li Y, Sawada T, Shi Y, Steinman RM, Pizlo Z (2013) Symmetry is the sine qua non of shape. In: Dickinson S, Pizlo Z (eds) Shape perception in human and computer vision. Springer, London, pp 21–40

    Chapter  Google Scholar 

  • Mamassian P, Landy M, Maloney LT (2002) Bayesian modeling of visual perception. In: Rao R, Olshausen B, Lewicki M (eds) Probabilistic models of the brain: perception and neural function. MIT Press, Cambridge, MA, pp 13–36

    Google Scholar 

  • Marion B (2013) The impact of utility on the evolution of perceptions. Dissertation, University of California, Irvine

  • Mark JT (2013) Evolutionary pressures on perception: when does natural selection favor truth? Ph.D. Dissertation, University of California, Irvine, CA

  • Mark J, Marion B, Hoffman DD (2010) Natural selection and veridical perception. J Theor Biol 266:504–515

    Article  Google Scholar 

  • Marr D (1982) Vision. Freeman, San Francisco

    Google Scholar 

  • Maynard Smith J (1982) Evolution and the theory of games. Cambridge University Press, Cambridge, New York

    Book  Google Scholar 

  • Maynard Smith J (1989) Evolutionary Genetics. Oxford University Press, Oxford, New York

    Google Scholar 

  • Moran PAP (1958) Random processes in genetics. Proc Camb Philos Soc 54:60–71

    Article  Google Scholar 

  • Moran PAP (1962) The statistical processes of evolutionary theory. Clarendon Press, Oxford

    Google Scholar 

  • Nowak MA (2006) Evolutionary dynamics: exploring the equations of life. Belknap Harvard University Press, Cambridge

    Book  Google Scholar 

  • Palmer S (1999) Vision science: photons to phenomenology. MIT Press, Cambridge

    Google Scholar 

  • Pascucci D, Mancuso G, Santandrea E, Libera C, Plomp G, Chelazzi L (2019) Laws of concatenated perception: vision goes for novelty, decisions for perseverance. PLoS Biol 17(3):e3000144

    Article  Google Scholar 

  • Pinker S (2005) So how does the mind work? Mind Lang 20:1–24

    Article  Google Scholar 

  • Pizlo Z (2001) Perception viewed as an inverse problem. Vis Res 41:3145–3161

    Article  Google Scholar 

  • Pizlo Z, Li Y, Sawada T, Steinman RM (2014) Making a machine that sees like us. Oxford University Press, New York

    Book  Google Scholar 

  • Prakash C, Field C, Hoffman DD, Prentner R, Singh M (2020) Fact, fiction, and fitness. Entropy 22(5):514. https://doi.org/10.3390/e22050514

    Article  Google Scholar 

  • Shams L, Kamitani Y, Shimojo S (2002) Visual illusion induced by sound. Cogn Brain Res 14(1):147–152

    Article  Google Scholar 

  • Shepard R (1994) Perceptual-cognitive universals as reflections of the world. Psychon Bull Rev 1(1):2–28

    Article  Google Scholar 

  • Singh M, Hoffman DD (2013) Natural selection and shape perception: shape as an effective code for fitness. In: Dickinson S, Pizlo Z (eds) Shape perception in human and computer vision: an interdisciplinary perspective. Springer, New York, pp 171–185

    Chapter  Google Scholar 

  • Taylor C, Fudenberg D, Sasaki A, Nowak M (2004) Evolutionary game dynamics in finite populations. Bull Math Biol 66:1621–1644

    Article  Google Scholar 

  • Taylor PD, Jonker LB (1978) Evolutionary stable strategies and game dynamics. Math Biosci 40:145–156

    Article  Google Scholar 

  • Thompson P, Burr D (2009) Visual aftereffects. Curr Biol 19(1):R11-14

    Article  Google Scholar 

  • von Uexküll J (2010) A foray into the worlds of animals and humans: with a theory of meaning. Translated by J. D. O’Neil. University of Minnesota Press. (Original work published in 1934.)

  • Whitney D, Leib AY (2018) Ensemble perception. Annu Rev Psychol 69:105–129

    Article  Google Scholar 

  • Yuille A, Bülthoff H (1996) Bayesian decision theory and psychophysics. In: Knill D, Richards W (eds) Perception as Bayesian inference. Cambridge University Press, New York

    Google Scholar 

Download references

Acknowledgements

We thank Federico Faggin and Robert Prentner for illuminating discussions. This work has been partially funded by the Federico and Elvia Faggin Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manish Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Calculations for the Numerical Example in Table 1

Appendix: Calculations for the Numerical Example in Table 1

In this appendix we perform the Bayesian and expected-fitness calculations using the data given in Table 1.

To compute the Truth estimates, we first need the probability of each stimulation \({\mathbb{P}}({x}_{1})\) and \({\mathbb{P}}({x}_{2})\). These can be computed by marginalizing over the priors in the world as follows:

$${\mathbb{P}}({x}_{1})=p({x}_{1}\left|{w}_{1}\right)\mu \left({w}_{1}\right)+p\left({x}_{1}|{w}_{2}\right)\mu \left({w}_{2}\right)+p\left({x}_{1}|{w}_{3}\right)\mu \left({w}_{3}\right)$$
$$=\frac{1}{4}.\frac{1}{7}+\frac{3}{4}.\frac{3}{7}+\frac{1}{4}.\frac{3}{7}=\frac{13}{28}$$
$${\mathbb{P}}({x}_{2})=p({x}_{2}\left|{w}_{1}\right)\mu \left({w}_{1}\right)+p\left({x}_{2}|{w}_{2}\right)\mu \left({w}_{2}\right)+p\left({x}_{2}|{w}_{3}\right)\mu \left({w}_{3}\right)$$
$$=\frac{3}{4}.\frac{1}{7}+\frac{1}{4}.\frac{3}{7}+\frac{3}{4}.\frac{3}{7}=\frac{15}{28}$$

By Bayes’ Theorem, the posterior probabilities of the world states, given \({x}_{1},\) are

$$p({w}_{1}\left|{x}_{1}\right)=p\left({x}_{1}\left|{w}_{1}\right)\right).\frac{\mu \left({w}_{1}\right)}{P\left({x}_{1}\right)}=\frac{1}{4}.\frac{1}{7}/\frac{13}{28}=\frac{1}{13}$$
$$p({w}_{2}\left|{x}_{1}\right)=p\left({x}_{1}\left|{w}_{2}\right)\right).\frac{\mu \left({w}_{2}\right)}{P\left({x}_{1}\right)}=\frac{3}{4}.\frac{3}{7}/\frac{13}{28}=\frac{9}{13}$$
$$p({w}_{3}\left|{x}_{1}\right)=p\left({x}_{1}\left|{w}_{3}\right)\right).\frac{\mu \left({w}_{3}\right)}{P\left({x}_{1}\right)}=\frac{1}{4}.\frac{3}{7}/\frac{13}{28}=\frac{3}{13}$$

Thus the maximum a posteriori, or Truth estimate for stimulus \({x}_{1}\) is \({w}_{2}\).

Posterior probabilities of the world states, given \({s}_{2},\) are:

$$p({w}_{1}\left|{x}_{2}\right)=p\left({x}_{2}\left|{w}_{1}\right)\right).\frac{\mu \left({w}_{1}\right)}{P\left({x}_{2}\right)}=\frac{3}{4}.\frac{1}{7}/\frac{15}{28}=\frac{1}{5}$$
$$p({w}_{2}\left|{x}_{2}\right)=p\left({x}_{2}\left|{w}_{2}\right)\right).\frac{\mu \left(2\right)}{P\left({x}_{2}\right)}=\frac{1}{4}.\frac{3}{7}/\frac{15}{28}=\frac{1}{5}$$
$$p({w}_{3}\left|{x}_{2}\right)=p\left({x}_{2}\left|{w}_{3}\right)\right).\frac{\mu \left({w}_{3}\right)}{P\left({x}_{2}\right)}=\frac{3}{4}.\frac{3}{7}/\frac{15}{28}=\frac{3}{5}$$

Thus the maximum a posteriori, or Truth estimate for stimulus \({x}_{2}\) is \({w}_{3}.\)

Finally, the expected-fitness values of the different sensory stimulations \({x}_{1}\) and \({x}_{2}\) are, respectively:

$$F\left({x}_{1}\right)=p({w}_{1}\left|{x}_{1}\right)f\left({w}_{1}\right)+p({w}_{2}\left|{x}_{1}\right)f\left({w}_{2}\right)+p({w}_{3}\left|{x}_{1}\right)f\left({w}_{3}\right)=\frac{1}{13}.20+\frac{9}{13}.4+\frac{3}{13}.3=5;$$
$$F\left({x}_{2}\right)=p({w}_{1}\left|{x}_{2}\right)f\left({w}_{1}\right)+p({w}_{2}\left|{x}_{2}\right)f\left({w}_{2}\right)+p({w}_{3}\left|{x}_{2}\right)f\left({w}_{3}\right)$$
$$={\frac{1}{5}}.20+{\frac{1}{5}}.4+{\frac{3}{5}}.3=6.6.$$

Thus \({x}_{2}\) has a larger expected fitness than \({x}_{1}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prakash, C., Stephens, K.D., Hoffman, D.D. et al. Fitness Beats Truth in the Evolution of Perception. Acta Biotheor 69, 319–341 (2021). https://doi.org/10.1007/s10441-020-09400-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10441-020-09400-0

Keywords

Navigation