Skip to main content
Log in

Sensitivity Analysis of a Left Ventricle Model in the Context of Intraventricular Dyssynchrony

  • Regular Article
  • Published:
Acta Biotheoretica Aims and scope Submit manuscript

Abstract

The objective of the current study was to propose a sensitivity analysis of a 3D left ventricle model in order to assess the influence of parameters on myocardial mechanical dispersion. A finite element model of LV electro-mechanical activity was proposed and a screening method was used to evaluate the sensitivity of model parameters on the standard deviation of time to peak strain. Results highlight the importance of propagation parameters associated with septal and lateral segments activation. Simulated curves were compared to myocardial strains, obtained from echocardiography of one healthy subject and one patient diagnosed with intraventricular dyssynchrony and coronary artery disease. Results show a close match between simulation and clinical strains and illustrate the model ability to reproduce myocardial strains in the context of intraventricular dyssynchrony.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bertola B, Rondano E, Sulis M, Sarasso G, Piccinino C, Marti G, Devecchi P, Magnani A, Francalacci G, Marino PN (2009) Cardiac dyssynchrony quantitated by time-to-peak or temporal uniformity of strain at longitudinal, circumferential, and radial level: implications for resynchronization therapy. J Am Soc Echocardiogr 22(6):665–671. https://doi.org/10.1016/j.echo.2009.03.010 (Epub 2009 May 7)

    Article  Google Scholar 

  • Bovendeerd PH, Borsje P, Arts T, van De Vosse FN (2006) Dependence of intramyocardial pressure and coronary flow on ventricular loading and contractility: a model study. Ann Biomed Eng 34(12):1833–1845

    Article  Google Scholar 

  • Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, Pennell DJ, Rumberger JA, Ryan T, Verani MS (2002) American Heart Association Writing Group on myocardial segmentation and registration for cardiac imaging. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 105(4):539–42

    Article  Google Scholar 

  • Danan D, Le Rolle V, Hubert A, Galli E, Bernard A, Donal E, Hernandez AI (2017) Validation of a Finite Element Method framework for cardiac mechanics applications. SIPAIM 2017. In: 13th international symposium on medical information processing and analysis, San Andres Island, Colombia, October 5–7, 2017

  • de Vecchi A, Nordsletten DA, Razavi R, Greil G, Smith NP (2013) Patient specific fluid-structure ventricular modelling for integrated cardiac care. Med Biol Eng Comput 51(11):1261–1270

    Article  Google Scholar 

  • Dokos S, Cloherty SL, Lovell NH (2007) “Computational model of atrial electrical activation and propagation,. In: 29th annual international conference of the IEEE engineering in medicine and biology society, 2007. EMBS 2007. IEEE, New York. pp 908–911

  • El Houari K, Kachenoura A, Albera L, Bensaid S, Karfoul A, Boichon-Grivot C, Rochette M, Hernandez A (2017) A fast model for solving the ECG forward problem based on an evolutionary algorithm. In: IEEE 7th international workshop on computational advances in multi-sensor adaptive processing (CAMSAP), 2017, IEEE, New York, pp 1–5

  • FitzHugh R (1961) Impulses and physiological states in theoretical models of nerve membrane. Biophys J 1:445–466

    Article  Google Scholar 

  • Franzone PC, Pavarino LF, Taccardi B (2005) simulations of excitation and recovery in cardiac blocks with intramural heterogeneity. Funcional Imaging and Modeling of the Heart (FIMH), pp 267–277

  • Gerardo-Giorda L, Perego M, Veneziani A (2010) Optimized Schwarz coupling of bidomain and monodomain models in electrocardiology. Math Model Numer Anal 45:309–334

    Article  Google Scholar 

  • Guarini M, Urzua J, Cipriano A, Gonzalez W (1998) Estimation of cardiac function from computer analysis of the arterial pressure waveform. IEEE Trans Biomed Eng 45(12):1420–1428

    Article  Google Scholar 

  • Henriquez CS, Plonsey R (1990) Simulation of propagation along a cylindrical bundle of cardiac tissue. I : mathematical formulation. IEEE Trans Biomed Eng 37(9):850–860

    Article  Google Scholar 

  • Hernandez A, Carrault G, Mora F (2002) Model-based interpretation of cardiac beats by evolutionary algorithms: signal and model interaction. Artif Intell Med 26(3):211–235

    Article  Google Scholar 

  • Humphrey JD, Strumpf RK, Yin FC (1990) Determination of a constitutive relation for passive myocardium : II. Parameter estimation. J Biomech Eng 112(3):340–346

    Article  Google Scholar 

  • Hunter PJ (1995) Myocardial constitutive laws for continuum mechanics models of the heart. Adv Exp Med Biol 382:303–318

    Article  Google Scholar 

  • Kazbanov IV, Clayton RH, Nash MP, Bradley CP, Paterson DJ, Hayward MP, Taggart P, Panfilov AV (2014) Effect of global cardiac ischemia on human ventricular fibrillation: insights from a multi-scale mechanistic model of the human heart. PLoS Comput Biol 10(11):e1003891

    Article  Google Scholar 

  • Keener JP (1996) Direct activation and defibrillation of cardiac tissue. J Theor Biol 178:313–324

    Article  Google Scholar 

  • Kerckhoffs RC, Bovendeerd PH, Kotte JC, Prinzen FW, Smits K, Arts T (2003) Homogeneity of cardiac contraction despite physiological asynchrony of depolarization: a model study. Ann Biomed Eng 31(5):536–547

    Article  Google Scholar 

  • Khan FZ, Virdee MS, Palmer CR, Pugh PJ, O’Halloran D, Elsik M, Read PA, Begley D, Fynn SP, Dutka DP (2012) Targeted left ventricular lead placement to guide cardiac resynchronization therapy: the TARGET study: a randomized, controlled trial. J Am Coll Cardiol 59(17):1509–1518. https://doi.org/10.1016/j.jacc.2011.12.030

    Article  Google Scholar 

  • Kunisch Karl, Souza Diego A (2018) On the one-dimensional nonlinear monodomain equations with moving controls. J de Mathématiques Pures et Appliquées 117(9):94–122

    Article  Google Scholar 

  • Le Rolle V, Hernandez AI, Richard P-Y, Donal E, Carrault G (2008) Model-based analysis of myocardial strain data acquired by tissue Doppler imaging. Artif Intell Med 44(3):201–219

    Article  Google Scholar 

  • Le Rolle V, Hernandez AI, Richard P-Y, Pibarot P, Durand L-G, Carrault G (2009) A tissue-level electromechanical model of the left ventricle: application to the analysis of intraventricular pressure. Acta Biotheor 57:457–478

    Article  Google Scholar 

  • Lumens J, Tayal B, Walmsley J, Delgado-Montero A, Huntjens PR, Schwartzman D, Althouse AD, Delhaas T, Prinzen FW, Gorcsan J 3rd (2015) Differentiating electromechanical from non-electrical substrates of mechanical discoordination to identify responders to cardiac resynchronization therapy. Circ Cardiovasc Imaging 8(9):e003744. https://doi.org/10.1161/CIRCIMAGING.115.003744

    Article  Google Scholar 

  • Luo CH, Rudy Y (1994) A dynamic model of the cardiac ventricular action potential. ii. afterdepolarizations, triggered activity, and potentiation. Circ Res 74(6):1097–1113

    Article  Google Scholar 

  • McCormick M, Nordsletten D, Kay D, Smith N (2013) Simulating left ventricular fluid solid mechanics through the cardiac cycle under LVAD support. J Comput Phys 244:80–96

    Article  Google Scholar 

  • Morris M (1991) Factorial sampling plans for preliminary computational experiments. Technometrics 33(2):161–174

    Article  Google Scholar 

  • Palladino JL, Noordergraaf A (2002) A paradigm for quantifying ventricular contraction. Cell Mol Biol Lett 7(2):331–335

    Google Scholar 

  • Pitzalis MV, Iacoviello M, Romito R et al (2002) Cardiac resynchronization therapy tailored by echocardiographic evaluation of ventricular asynchrony. J Am Coll Cardiol 40:1615–1622

    Article  Google Scholar 

  • Rogers JM, McCulloch AD (1994) A collocation-Galerkin finite element model of cardiac action potential propagation. IEEE Trans Biomed Eng 41:743–757

    Article  Google Scholar 

  • Sermesant M, Delingette H, Ayache N (2006) An electromechanical model of the heart for image analysis and simulation. IEEE Trans Med Imaging 25(5):612–625

    Article  Google Scholar 

  • Sovilj S, Magjarevic Lovell NH, Dokos S (2013) A simplified 3D model of whole heart electrical activity and 12-lead ECG generation. Comput Math Methods Med 2013:134208. https://doi.org/10.1155/2013/134208 (Epub 2013 Apr 22)

    Article  Google Scholar 

  • Sweeney MO, Prinzen FW (2008) Ventricular pump function and pacing: physiological and clinical integration. Circ Arrhythm Electrophysiol 1(2):127–39. https://doi.org/10.1161/CIRCEP.108.777904

    Article  Google Scholar 

  • Talbot H, Marchesseau S, Duriez C, Sermesant M, Cotin S, Delingette H (2013) Towards an interactive electromechanical model of the heart. Interface Focus 3(2):20120091

    Article  Google Scholar 

  • van Everdingen WM, Walmsley J, Cramer MJ, van Hagen I, De Boeck BWL, Meine M, Delhaas T, Doevendans PA, Prinzen FW, Lumens J, Leenders GE (2017) Echocardiographic prediction of cardiac resynchronization therapy response requires analysis of both mechanical dyssynchrony and right ventricular function: a combined analysis of patient data and computer simulations. J Am Soc Echocardiogr 30(10):1012–1020.e2. https://doi.org/10.1016/j.echo.2017.06.004

    Article  Google Scholar 

  • Walmsley J, Huntjens PR, Prinzen FW, Delhaas T, Lumens J (2016) Septal flash and septal rebound stretch have different underlying mechanisms. Am J Physiol Heart Circ Physiol 310(3):H394–H403. https://doi.org/10.1152/ajpheart.00639.2015 (Epub 2015 Dec 31)

    Article  Google Scholar 

  • Weise LD, Panfilov AV (2013) A discrete electromechanical model for human cardiac tissue: effects of stretch-activated currents and stretch conditions on restitution properties and spiral wave dynamics. Plos ONE 8:e59317. https://doi.org/10.1371/journal.pone.0059317

    Article  Google Scholar 

  • Yu CM, Zhang Q, Fung JW, Chan HC, Chan YS, Yip GW, Kong SL, Lin H, Zhang Y, Sanderson JE (2005) A novel tool to assess systolic asynchrony and identify responders of cardiac resynchronization therapy by tissue synchronization imaging. J Am Coll Cardiol 45(5):677–84

    Article  Google Scholar 

Download references

Funding

French National Research Agency (ANR) (ANR-16-CE19-0008-01) (project MAESTRo).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virginie Le Rolle.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le Rolle, V., Galli, E., Danan, D. et al. Sensitivity Analysis of a Left Ventricle Model in the Context of Intraventricular Dyssynchrony. Acta Biotheor 68, 45–59 (2020). https://doi.org/10.1007/s10441-019-09362-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10441-019-09362-y

Keywords

Navigation