Acta Biotheoretica

, Volume 63, Issue 1, pp 23–31 | Cite as

An Embedded Automaton to Monitor the Glycolysis Process in Pancreatic β-Cells

  • R. Selvakumar
  • M. Rashith Muhammad
  • G. Poornima Devi
Regular Article


An embedded automaton is introduced to monitor the whole glycolysis process in pancreatic β-cell and it is a hybridization of both non-deterministic finite automaton and push-down automaton. The set of irreversible and reversible reactions in the glycolysis process are related to non-deterministic finite automaton and push-down automaton respectively. The embedded automaton is used to observe the glucose metabolism with the states of acceptance and rejection. The acceptance state of the embedded automaton depicts the normal level of glycolysis and insulin secretion. The rejection state of this machine shows inhibition of glycolysis which obstructs the secretion of insulin. The subsequent low level of insulin leads to the high blood glucose level also known as hyperglycemia. In this study, the designed machine can be used to regulate the process of glycolysis through a group of regulatory glycolytic enzymes for the treatment of Diabetes mellitus at molecular level.


Embedded automata Enzymes Glycolysis Pancreatic β-cell 



Embedded automata




Glucokinase activators


Glucose transporter


Non-deterministic finite automata


Push-down automata


Nicotinamide adenine dinucleotide


  1. Alarcón C, Wicksteed B, Rhodes CJ (2002) Regulation of the production and secretion of insulin. AV Diabetol 18:168–174Google Scholar
  2. Bell GI, Pilkis SJ, Weber IT, Polonsky KS (1996) Glucokinase mutations, insulin secretion, and diabetes mellitus. Annu Rev Physiol 58:171–186CrossRefGoogle Scholar
  3. Benenson Y, Paz-Elizur T, Adar R, Keinan E, Livneh Z, Shapiro E (2001) Programmable and autonomous computing machine made of biomolecules. Nature 414:430–434CrossRefGoogle Scholar
  4. Brown KS, Kalinowski SS, Megill JR, Durham SK, Mookhtiar KA (1997) Glucokinase regulatory protein may interact with glucokinase in the hepatocyte nucleus. Diabetes 46:179–186CrossRefGoogle Scholar
  5. Cavaliere M, Jonoska N, Yogev S, Piran R, Keinan E, Seeman N (2005) Biomolecular implementation of computing devices with unbounded memory. Lect Notes Comput Sci 3384:35–49CrossRefGoogle Scholar
  6. Chan SJ, Keim P, Steiner DF (1976) Cell-free synthesis of rat preproinsulins: characterization and partial amino acid sequence determination. Proc Natl Acad Sci USA 73:1964–1968CrossRefGoogle Scholar
  7. Hopcroft JE, Ullman JD (1979) Introduction to automata theory, languages, and computation. Addison-Wesley, BostonGoogle Scholar
  8. Joseph G, Ramakanth S, Wendy LC, Nancy-Ellen H, Fred TB, John WC, Kevin RG, Darryl WH, Robert FK, Paige EM, Linda M, Lida Q, Cheryl LS, John T, Mark AM, Chang AC, Mark TD, Franz MM, Joseph FG (2003) Allosteric activators of glucokinase: potential role in diabetes therapy. Science 301:370–372CrossRefGoogle Scholar
  9. Kari L (1997) DNA computing: the arrival of biological mathematics. Math Intell 19:9–22Google Scholar
  10. Krasinski T, Sakowski S, Poplawski T (2012) Autonomous push-down automaton built on DNA. Informatica 36:263–276Google Scholar
  11. Muhammad MR, Devi GP, Selvakumar R (2013) A computational model for monitoring glycolysis process in cancer cells. J Bioinform Intell Control 2:300–304CrossRefGoogle Scholar
  12. Nowak R, Plucienniczak A (2008) Finite state automata built on DNA. Biocybern Biomed Eng 28:3–19Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • R. Selvakumar
    • 1
  • M. Rashith Muhammad
    • 1
  • G. Poornima Devi
    • 2
  1. 1.School of Advanced SciencesVIT UniversityVelloreIndia
  2. 2.Institute of Pharmacy and Molecular BiotechnologyHeidelberg UniversityHeidelbergGermany

Personalised recommendations