Acta Biotheoretica

, Volume 63, Issue 1, pp 1–21 | Cite as

Mathematical Analysis of a Chlamydia Epidemic Model with Pulse Vaccination Strategy

Regular Article

Abstract

In this paper, we have considered a dynamical model of Chlamydia disease with varying total population size, bilinear incidence rate and pulse vaccination strategy. We have defined two positive numbers \(R_{0}\) and \(R_{1}(\le R_{0})\). It is proved that there exists an infection-free periodic solution which is globally attractive if \(R_{0}<1\) and the disease is permanent if \(R_{1}>1.\) The important mathematical findings for the dynamical behaviour of the Chlamydia disease model are also numerically verified using MATLAB. Finally epidemiological implications of our analytical findings are addressed critically.

Keywords

Chlamydia trachomatis Pulse vaccination Permanence Extinction Global stability 

References

  1. Adetunde IA, Koduah M, Amporful JK, DwummohSarpong A, Nyarko PK, Ennin CC, Appiah ST, Oladejo N (2009) Epidemiology of Chlamydia bacteria infections—a review. J Am Sci 5(4):55–64Google Scholar
  2. Agur Z, Cojocaru L, Mazor G, Anderson RM, Danon YL (1993) Pulse mass measles vaccination across age cohorts. Proc Natl Acad Sci USA 90:11698–11702CrossRefGoogle Scholar
  3. Anderson RM, May RM (1979) Population biology of infectious diseases. Part I. Nature 180:361–367CrossRefGoogle Scholar
  4. Anderson RM, May RM (1992) Infectious disease of humans, dynamical and control. Oxford University Press, OxfordGoogle Scholar
  5. Averting HIV and AIDS (2010) STD statistics worldwide. http://www.avert.org/stdstatisticsworldwide.htm. Accessed 08 Apr 2010
  6. Babiuk LA, Babiuk SL, Baca-Estrada ME (2002) Novel vaccine strategies. Adv Virus Res 58:29–80CrossRefGoogle Scholar
  7. Bainov DD, Simeonov PS (1993) Impulsive differential equations: periodic solutions and applications. Longman Scientific and Technical, New YorkGoogle Scholar
  8. Bainov DD, Simeonov PS (1995) The stability theory of impulsive differential equations: asymptotic properties of the solutions. World Scientific, SingaporeGoogle Scholar
  9. Brauer F, Castillo-Chavez C (2001) Mathematical models in population biology and epidemiology. Springer, BerlinCrossRefGoogle Scholar
  10. Cai L, Li X, Ghosh M, Guo B (2009) Stability of an HIV/AIDS epidemic model with treatment. J Comput Appl Math 229:313–323CrossRefGoogle Scholar
  11. Capasso V (1993) Mathematical structures of epidemic systems, lectures notes in biomathematics, vol 97. Springer, BerlinCrossRefGoogle Scholar
  12. Centers for Disease Control and Prevention (2008a) Sexually transmitted diseases (Chlamydia fact sheet). http://www.cdc.gov/std/Chlamydia/STDFact-Chlamydia.htm. Accessed 1 Apr 2008
  13. Centers for Disease Control and Prevention (2008b) Trends in reportable sexually transmitted diseases in the United States. http://www.cdc.gov/std/stats04/trends2004.htm. Accessed 1 Apr 2008
  14. Cooke KL, van Den Driessche P (1996) Analysis of an SEIRS epidemic model with two delays. J Math Biol 35:240–260CrossRefGoogle Scholar
  15. Diekmann O, Heesterbeek JAP (2000) Mathematical epidemiology of infectious diseases: model building analysis, and interpretation. Wiley, ChichesterGoogle Scholar
  16. d’Onofrio A (2002a) Pulse vaccination strategy in the SIR epidemic model: global asymptotic stable eradication in presence of vaccine failures. Math Comput Model 36:473–489CrossRefGoogle Scholar
  17. d’Onofrio A (2002b) Stability properties of vaccination strategy in SEIR epidemic model. Math Biosci 179:57–72CrossRefGoogle Scholar
  18. d’Onofrio A (2005) Vaccination policies and nonlinear force of infection. Appl Math Comput 168:613–622CrossRefGoogle Scholar
  19. Fenton KA, Lowndes CM (2004) Recent trends in the epidemiology of sexually transmitted infections in the European Union. Sex Transm Infect 80:255–263CrossRefGoogle Scholar
  20. Fleming DT, Wasserheit JN (1999) From epidemiological synergy to public health policy and practice: the contribution of other sexually transmitted diseases to sexual transmission of HIV infection. Sex Transm Infect 75(4):3–17CrossRefGoogle Scholar
  21. Gakkhar S, Negi K (2008) Pulse vaccination in SIRS epidemic model with non-monotonic incidence rate. Chaos Solitons Fract 35:626–638CrossRefGoogle Scholar
  22. Gao S, Chen L, Nieto JJ, Torres A (2006) Analysis of a delayed epidemic model with pulse vaccination and saturation incidence. Vaccine 24:6037–6045CrossRefGoogle Scholar
  23. Gao S, Chen L, Teng Z (2007) Impulsive vaccination of an SEIRS model with time delay and varying total population size. Bull Math Biol 69:731–745CrossRefGoogle Scholar
  24. Gjorrgjieva J, Smith K, Chowell G, Sanchez F, Synder J, Castillo-Chavez C (2005) The role of vaccination in the control of SARS. Math Biosci Eng 2:1–17Google Scholar
  25. Hethcote HW, van Den Driessche P (1991) Some epidemiological models with nonlinear incidence. J Math Biol 29:271–287CrossRefGoogle Scholar
  26. Hillis SD, Wasserheit JN (1996) Screening for Chlamydia—a key to the prevention of pelvic inflammatory disease. New Engl J Med 334(21):1399–1401CrossRefGoogle Scholar
  27. Hui J, Chen L (2004) Impulsive vaccination of SIR epidemic models with nonlinear incidence rates. Discret Contin Dyn Syst Ser B 4:595–605CrossRefGoogle Scholar
  28. Kahn RH, Mousure DJ, Chatlotte SB, Kent K, Chow JM, Boudov MR, Brock J, Tulloch S (2005) Chlamydia trachomatis and Neisseria gonorrhoeae prevalence and coinfection in adolescents entering selected US Juvenile Detention Centers, 1997–2002. Sex Transm Dis 32(4):255–259CrossRefGoogle Scholar
  29. Kermack WO, Mckendrick AG (1927) Contributions to the mathematical theory of epidemics. Part I Proc R Soc A 115(5):700–721CrossRefGoogle Scholar
  30. Lakshmikantham V, Bainov DD, Simeonov PS (1989) Theory of impulsive differential equations. World Scientific, SingaporeCrossRefGoogle Scholar
  31. Ma W, Song M, Takeuchi Y (2004) Global stability of an SIR epidemic model with time delay. Appl Math Lett 17:1141–1145CrossRefGoogle Scholar
  32. Manavi KA (2006) Review on infection with Chlamydia trachomatis. Best Pract Res Clin Obstet Gynaecol 20:941–951CrossRefGoogle Scholar
  33. Mena-Lorca J, Hethcote HW (1992) Dynamic models of infectious disease as regulators of population sizes. J Math Biol 30:693–716Google Scholar
  34. Meng X, Chen L, Cheng H (2007) Two profitless delays for the SEIRS epidemic disease model with nonlinear incidence and pulse vaccination. Appl Math Comput 186:516–529CrossRefGoogle Scholar
  35. Miller WC, Ford CA, Morris M, Handcock MS, Schmitz JL, Hobbs MM, Cohen MS, Harris KM, Udry JR (2004) Prevalence of Chlamydial and gonococcal infections among young adults in the United States. JAMA 291:2229–2236CrossRefGoogle Scholar
  36. Mushayabasa S (2012) The epidemiological consequences of Chlamydia and gonorrhea co-infection: insights from a mathematical model. Int J Appl Math Comput 4(3):295–306Google Scholar
  37. Naresh R, Tripathi A, Omar S (2006) Modelling of the spread of AIDS epidemic with vertical transmission. Appl Math Comput 178:262–272CrossRefGoogle Scholar
  38. Nokes DJ, Swinton J (1995) The control of childhood viral infections by pulse vaccination. IMA J Math Appl Med Biol 12:29–53CrossRefGoogle Scholar
  39. Regan DG, Wilson DP, Hocking JS (2008) Coverage is the key for e.ective screening of Chlamydia trachomatis in Australia. J Infect Dis 198:349–358CrossRefGoogle Scholar
  40. Ruan S, Wang W (2003) Dynamical behavior of an epidemic model with nonlinear incidence rate. J Differ Equ 188:135–163CrossRefGoogle Scholar
  41. Schillinger JA, Dunne EF, Chapin JB, Ellen JM, Gaydos CA, Willard NJ, Kent CK, Marrazzo JM, Klausner JD, Rietmeijer CA, Markowitz LE (2005) Prevalence of Chlamydia trachomatis infection among men screened in 4 U.S. cities. Sex Transm Dis 32:74–77CrossRefGoogle Scholar
  42. Sharomi O, Gumel AB (2009) Re-infection-induced backward bifurcation in the transmission dynamics of Chlamydia trachomatis. J Math Anal Appl 356(1):96–118CrossRefGoogle Scholar
  43. Stone L, Shulgin B, Agur Z (2000) Theoretical examination of the pulse vaccination policy in the SIR epidemic models. Math Comput Model 31:207–215CrossRefGoogle Scholar
  44. Takeuchi Y, Cui J, Rinko M, Saito Y (2006a) Permanence of delayed population model with dispersal loss. Math Biosci 201:143–156CrossRefGoogle Scholar
  45. Takeuchi Y, Cui J, Rinko M, Saito Y (2006b) Permanence of dispersal population model with time delays. J Comp Appl Math 192:417–430CrossRefGoogle Scholar
  46. Tang S, Xiao Y, Clancy D (2005) New modelling approach concerning integrated disease control and cost-effectivity. Nonlinear Anal 63:439–471CrossRefGoogle Scholar
  47. Thieme HR (2003) Mathematics in population biology. Princeton University Press, PrincetonGoogle Scholar
  48. Wang W (2002) Global behavior of an SEIRS epidemic model with time delays. Appl Math Lett 15:423–428CrossRefGoogle Scholar
  49. Wei C, Chen L (2008) A delayed epidemic model with pulse vaccination. Discret Dyn Nat Soc Article ID 746951, 12 pp. doi:10.1155/2008/746951
  50. World Health Organization (2001) Global prevalence and incidence of selected curable sexually transmitted infections overview and estimates. http://www.who.int/docstore/hiv/GRSTI/index.htm. Accessed 08 Apr 2010
  51. World Health Organization (2008) The world health report: changing history. http://www.who.int/entity/whr/2004/en/report04_en.pdf. Accessed 1 Apr 2008
  52. World Health Organization (2010) Initiative for vaccine research (IVR): Chlamydia trachomatis. http://www.who.int/vaccine_research/diseases/soa_std/en/index1.html. Accessed 5 March 2010
  53. Zhang T, Teng Z (2008) An SIRVS epidemic model with pulse vaccination strategy. J Theor Biol 250:375–381CrossRefGoogle Scholar
  54. Zhou Y, Liu H (2003) Stability of periodic solutions for an SIS model with pulse vaccination. Math Comput Model 38:299–308CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Institute of MathematicsNational Autonomous University of MexicoMexicoMexico
  2. 2.Department of MathematicsIndian Institute of Engineering Science and TechnologyHowrahIndia

Personalised recommendations