Acta Biotheoretica

, Volume 62, Issue 4, pp 499–525 | Cite as

Hylomorphism and the Metabolic Closure Conception of Life

Regular Article

Abstract

This paper examines three exemplary theories of living organization with respect to their common feature of defining life in terms of metabolic closure: autopoiesis, (M, R) systems, and chemoton theory. Metabolic closure is broadly understood to denote the property of organized chemical systems that each component necessary for the maintenance of the system is produced from within the system itself, except for an input of energy. It is argued that two of the theories considered—autopoiesis and (M, R) systems—participate in a hylomorphist pattern of thinking which separates the “form” of the living system from its “matter.” The analysis and critique of hylomorphism found in the work of the philosopher Gilbert Simondon is then applied to these two theories, and on the basis of this critique it is argued that the chemoton model offers a superior theory of minimal life which overcomes many of the problems associated with the other two. Throughout, the relationship between hylomorphism and the understanding of living things as machines is explored. The paper concludes by considering how hylomorphism as a background ontology for theories of life fundamentally influences the way life is defined.

Keywords

Hylomorphism Autopoiesis (M, R) Systems Chemoton Metabolic closure Simondon Machine 

References

  1. Aristotle (1984) The complete works of Aristotle: the revised Oxford translation, Barnes J (rev). Princeton University Press, PrincetonGoogle Scholar
  2. Atlan H, Bousquet C (1994) Questions de Vie. Seuil, ParisGoogle Scholar
  3. Barnes G (2003) The paradoxes of hylomorphism. Rev Metaphys 56:501–523Google Scholar
  4. Bedau M (1996) The nature of life. In: Boden M (ed) The philosophy of artificial life. Oxford University Press, Oxford, pp 332–360Google Scholar
  5. Cárdenas ML, Letelier JC, Cornish-Bowden A, Gutierrez C, Soto-Andrade J (2010) Closure to efficient causation, computability, and artificial life. J Theor Biol 263:79–92. doi:10.1016/j.jtbi.2011.01.030 CrossRefGoogle Scholar
  6. Chandler J, Van de Vijver G (eds) (2000) Closure: emergent organizations and their dynamics. New York Academy of Sciences, New YorkGoogle Scholar
  7. Chyba CF, Mcdonald GD (1995) The origins of life in the solar system: current issues. Annu Rev Earth Planet Sci 23:215–249. doi:10.1146/annurev.earth.23.1.215 CrossRefGoogle Scholar
  8. Cleland CE, Chyba CF (2002) Defining life. Origins Life Evol B 32:387–393CrossRefGoogle Scholar
  9. Collier J (2000) Autonomy and process closure as the basis for functionality. In: Chandler J, Van de Vijver G (eds) Closure: emergent organizations and their dynamics. New York Academy of Sciences, New York. doi:10.1111/j.1749-6632.2000.tb06287.x Google Scholar
  10. Copi I (1954) Essence and accident. J Philos 51:706–719. doi:10.2307/2021504 CrossRefGoogle Scholar
  11. Cornish-Bowden A, Cárdenas M, Letelier JC, Soto-Andrade J (2007) Beyond reductionism: metabolic circularity as a guiding vision for a real biology of systems. Proteomics 7:839–845. doi:10.1002/pmic.200600431 CrossRefGoogle Scholar
  12. Cottam R, Ranson W, Vounckx R (2007) Re-mapping Robert Rosen’s (M, R)-systems. Chem Biodivers 4:2352–2368. doi:10.1002/cbdv.200790192 CrossRefGoogle Scholar
  13. Dennett D (2011) Shall we tango? No, but thanks for asking. J Conscious Stud 18:23–34Google Scholar
  14. Dennett D (2013) Aching voids and making voids, a review of incomplete nature: how mind emerged from matter by Terrence W. Deacon. Q Rev Biol 88:321–324. doi:10.1086/673760 CrossRefGoogle Scholar
  15. Eigen M, Schuster P (1977) The hypercycle: a principle of natural self-organization. Part A: emergence of the hypercycle. Naturwissenschaften 11:541–565. doi:10.1007/BF00450633 CrossRefGoogle Scholar
  16. Etxeberria A (2004) Autopoiesis and natural drift: genetic information, reproduction, and evolution revisited. Artif Life 10:347–360. doi:10.1162/1064546041255575 CrossRefGoogle Scholar
  17. Gánti T (1971) Az élet princípuma. Gondolat, BudapestGoogle Scholar
  18. Gánti T (1975) Organization of chemical reactions into dividing and metabolizing units: the chemotons. Biosystems 7:15–21. doi:10.1016/0303-2647(75)90038-6 CrossRefGoogle Scholar
  19. Gánti T (1997) Biogenesis itself. J Theor Biol 187:583–593. doi:10.1006/jtbi.1996.0391 CrossRefGoogle Scholar
  20. Gánti T (2003) The principles of life. Oxford University Press, OxfordCrossRefGoogle Scholar
  21. Gorman M (2005) The essential and the accidental. Ratio 18:276–289. doi:10.1111/j.1467-9329.2005.00290.x CrossRefGoogle Scholar
  22. Gotthelf A (1976) Aristotle’s conception of final causality. Rev Metaphys 30:226–254Google Scholar
  23. Griesemer J (2003) The philosophical significance of Gánti’s work. In: The principles of life. Oxford University Press, Oxford, pp 169–186 Google Scholar
  24. Hordijk W, Steel M (2004) Detecting autocatalytic, self-sustaining sets in chemical reaction systems. J Theor Biol 227:451–461. doi:10.1016/j.jtbi.2003.11.020 CrossRefGoogle Scholar
  25. Jacob F (1970) La Logique du Vivant. Gallimard, ParisGoogle Scholar
  26. Johnston M (2006) Hylomorphism. J Philos 103:652–698Google Scholar
  27. Kauffman SA (1993) The origins of order. Oxford University Press, New YorkGoogle Scholar
  28. Lawvere F, Schanuel S (1997) Conceptual mathematics. Cambridge University Press, CambridgeGoogle Scholar
  29. Leibniz GW (1925) The monadology, 2nd edn. Oxford University Press, Oxford Latta R (ed and trans) (first published 1898)Google Scholar
  30. Letelier JC, Marín G, Mpodozis J (2003) Autopoietic and (M, R) systems. J Theor Biol 222:261–272. doi:10.1016/S0022-5193(03)00034-1 CrossRefGoogle Scholar
  31. Letelier JC, Soto-Andrade J, Guíñez Abarzúa J, Cornish-Bowden A, Cárdenas ML (2006) Organizational invariance and metabolic closure: analysis in terms of (M, R) systems. J Theor Biol 238:949–961. doi:10.1016/j.jtbi.2005.07.007 CrossRefGoogle Scholar
  32. Letelier JC, Cárdenas ML, Cornish-Bowden A (2011) From L’Homme Machine to metabolic closure: steps towards understanding life. J Theor Biol 286:100–113. doi:10.1016/j.jtbi.2011.06.033 CrossRefGoogle Scholar
  33. Luisi P (1998) About various definitions of life. Origins Life Evol B 28:613–622. doi:10.1023/A:1006517315105 CrossRefGoogle Scholar
  34. Machery E (2012) Why I stopped worrying about the definition of life… And why you should as well. Synthese 185:145–164. doi:10.1007/s11229-011-9880-1 CrossRefGoogle Scholar
  35. Maturana H (1980) Autopoiesis: reproduction, heredity and evolution. In: Zelený M (ed) Autopoiesis, dissipative structures, and spontaneous social orders. Westview, Boulder, pp 45–79Google Scholar
  36. Maturana H, Varela F (1980) Autopoiesis and cognition: the realization of the living. In: Boston studies in the philosophy of science, vol 42. D. Reidl, DordrechtGoogle Scholar
  37. Maynard Smith J, Szathmáry E (1995) The major transitions in evolution. Oxford University Press, OxfordGoogle Scholar
  38. McCall S (2012) The origin of life and the definition of life. In: Tahko T (ed) Contemporary Aristotelian metaphysics. Cambridge University Press, New York, pp 176–186Google Scholar
  39. Morange M (2008) Life explained. Cobb, M and Debevoise, M (trans). Yale University Press, New HavenGoogle Scholar
  40. Morowitz H, Smith E (2007) Energy flow and the organization of life. 13(1). doi:10.1002/cplx.20191
  41. Mossio M, Moreno A (2010) Organisational closure in biological organisms. Hist Philos Life Sci 32:269–288Google Scholar
  42. Mossio M, Longo G, Stewart J (2009) A computable expression of closure to efficient causation. J Theor Biol 257(3):489–498. doi:10.1016/j.jtbi.2008.12.012 CrossRefGoogle Scholar
  43. Nicholson D (2013) Organisms ≠ machines. Stud Hist Philos Biol Biomed Sci 44:669–678CrossRefGoogle Scholar
  44. Oyama S (2000) The ontogeny of information. Duke, DurhamCrossRefGoogle Scholar
  45. Pierce B (1991) Basic category theory for computer scientists. MIT Press, CambridgeGoogle Scholar
  46. Prigogine I, Nicolis G (1977) Self-organization in nonequilibrium systems. Wiley, New YorkGoogle Scholar
  47. Rea M (2011) Hylomorphism reconditioned. Philos Perspect 25:341–358. doi:10.1111/j.1520-8583.2011.00219.x CrossRefGoogle Scholar
  48. Rosen R (1972) Some relational cell models: the metabolism-repair system. In: Rosen R (ed) Foundations of mathematical biology. Academic Press, New YorkGoogle Scholar
  49. Rosen R (1991) Life itself. Columbia University Press, New YorkGoogle Scholar
  50. Rosen R (2000) Essays on life itself. Columbia University Press, New YorkGoogle Scholar
  51. Ruiz-Mirazo K, Moreno A (2012) Autonomy in evolution: from minimal to complex life. Synthese 185(1):21–52. doi:10.1007/s11229-011-9874-z CrossRefGoogle Scholar
  52. Simondon G (1995) L’individu et sa genèse physico-biologique. Jérôme Millon, GrenobleGoogle Scholar
  53. Simondon G (2005) L’individuation à la lumière des notions de forme et d’information. Jérôme Millon, GrenobleGoogle Scholar
  54. Soto-Andrade J, Jaramillo S, Gutiérrez C, Letelier JC (2011) Ouroboros avatars: a mathematical exploration of self-reference and metabolic closure. In: Lenaerts T, Giacobini M, Bersini H, Bourgine P, Dorigo M, Doursat R (eds) Advances in artificial life, ECAL 2011: proceedings of the eleventh European conference on the synthesis and simulation of living systems. The MIT Press, Cambridge, pp 763–770Google Scholar
  55. Swenson R (1992) Autocatakinetics: yes—autopoiesis, no: steps toward a unified theory of evolutionary ordering. Int J Gen Syst 21:207–228CrossRefGoogle Scholar
  56. Szathmáry E (2003) The biological significance of Gánti’s work in 1971 and today. In: The principles of life. Oxford University Press, Oxford, pp 157–168 Google Scholar
  57. Szathmáry E (2005) In search of the simplest cell. Nature 433:469–470. doi:10.1038/433469a CrossRefGoogle Scholar
  58. Szostak J, Artel D, Luisi P (2001) Synthesizing life. Nature 409:387–390. doi:10.1038/35053176 CrossRefGoogle Scholar
  59. Tahko T (ed) (2012) Contemporary Aristotelian metaphysics. Cambridge University Press, New YorkGoogle Scholar
  60. Varela F (1994) Autopoiesis and a biology of intentionality. In: McMullin B, Murphy N (eds) Autopoiesis and perception, Proceedings of a workshop held at Dublin City University on August 25 and 26, 1992Google Scholar
  61. Varela F (2000) El fenomeno de la vida. Dolmen Esayo, SantiagoGoogle Scholar
  62. Wiener N (1961) Cybernetics: or control and communication in the animal and the machine, 2nd edn. MIT Press, CambridgeGoogle Scholar
  63. Woese C (2004) A new biology for a new century. Microbiol Mol Biol R 68:173–186. doi:10.1128/MMBR.68.2.173-186.2004 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Institute of PhilosophyUniversity of LeuvenLeuvenBelgium

Personalised recommendations