Acta Biotheoretica

, Volume 62, Issue 1, pp 69–90 | Cite as

Developmental Models for Estimating Ecological Responses to Environmental Variability: Structural, Parametric, and Experimental Issues

  • Julia L. Moore
  • Justin V. RemaisEmail author
Regular Article


Developmental models that account for the metabolic effect of temperature variability on poikilotherms, such as degree-day models, have been widely used to study organism emergence, range and development, particularly in agricultural and vector-borne disease contexts. Though simple and easy to use, structural and parametric issues can influence the outputs of such models, often substantially. Because the underlying assumptions and limitations of these models have rarely been considered, this paper reviews the structural, parametric, and experimental issues that arise when using degree-day models, including the implications of particular structural or parametric choices, as well as assumptions that underlie commonly used models. Linear and non-linear developmental functions are compared, as are common methods used to incorporate temperature thresholds and calculate daily degree-days. Substantial differences in predicted emergence time arose when using linear versus non-linear developmental functions to model the emergence time in a model organism. The optimal method for calculating degree-days depends upon where key temperature threshold parameters fall relative to the daily minimum and maximum temperatures, as well as the shape of the daily temperature curve. No method is shown to be universally superior, though one commonly used method, the daily average method, consistently provides accurate results. The sensitivity of model projections to these methodological issues highlights the need to make structural and parametric selections based on a careful consideration of the specific biological response of the organism under study, and the specific temperature conditions of the geographic regions of interest. When degree-day model limitations are considered and model assumptions met, the models can be a powerful tool for studying temperature-dependent development.


Metabolic models Degree-day models Functional response Temperature threshold Environmental change 



This work was supported in part by the Ecology of Infectious Disease program of the National Science Foundation under Grant No. 0622743, by the National Institute for Allergy and Infectious Disease (K01AI091864) and by the Global Health Institute at Emory University. JLM acknowledges the support of a training grant from the National Institute for Allergy and Infectious Disease (T32AI055404), a NSF Graduate Research Fellowship (award number DGE-0940903), and a NSF GK-12 Fellowship (under DGE grant #0841297 to S.L. Williams and B. Ludaescher). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Supplementary material

10441_2014_9209_MOESM1_ESM.pdf (324 kb)
Non-linear models PDF (324 KB)
10441_2014_9209_MOESM2_ESM.pdf (128 kb)
Comparison of linear and non-linear models PDF (127 KB)
10441_2014_9209_MOESM3_ESM.pdf (86 kb)
Weather stations used in the comparison of daily degree-day methods PDF (85 KB)


  1. Allen J (1976) A modified sine wave method for calculating degree days. Environ Entomol 5(3):388–396Google Scholar
  2. Allsopp P, Butler D (1987) Estimating day-degrees from daily maximum-minimum temperatures: A comparison of techniques for a soil-dwelling insect. Agric For Meteorol 41(1-2):165–172CrossRefGoogle Scholar
  3. Bale JS, Masters GJ, Hodkinson ID, Awmack C, Bezemer M, Brown VK, Butterfield J, Buse A, Coulson JC, Farrar J, Good J, Harrington R, Hartley S, Jones TH, Lindroth RL, Press MC, Symrnioudis I, Watt AD, Whittaker JB (2002) Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob Change Biol 8(1):1–16CrossRefGoogle Scholar
  4. Beck S (1983) Insect thermoperiodism. Annu Rev Entomol 28(1):91–108CrossRefGoogle Scholar
  5. Beier J (1998) Malaria parasite development in mosquitoes. Annu Rev Entomol 43(1):519–543CrossRefGoogle Scholar
  6. Bensadia F, Boudreault S, Guay J, Michaud D, Cloutier C (2006) Aphid clonal resistance to a parasitoid fails under heat stress. J Insect Physiol 52(2):146–157CrossRefGoogle Scholar
  7. Bergant K, Trdan S (2006) How reliable are thermal constants for insect development when estimated from laboratory experiments? Entomol Exp Appl 120(3):251–256CrossRefGoogle Scholar
  8. Bolnick D, Amarasekare P, Araujo M, Burger R, Levine J, Novak M, Rudolf V, Schreiber S, Urban M, Vasseur D (2011) Why intraspecific trait variation matters in community ecology. Trends Ecol Evol 26(4):183–192CrossRefGoogle Scholar
  9. Bonhomme R (2000) Bases and limits to using degree day units. Eur J Agron 13(1):1–10CrossRefGoogle Scholar
  10. Brakefield P, Mazzotta V (1995) Matching field and laboratory environments: effects of neglecting daily temperature variation on insect reaction norms. J Evol Biol 8(5):559–573CrossRefGoogle Scholar
  11. Briere J, Pracros P, le Roux A, Pierre J (1999) A novel rate model of temperature-dependent development for arthropods. Environ Entomol 28(1):22–29Google Scholar
  12. Brown J, Gillooly J, Allen A, Savage V, West G (2004) Toward a metabolic theory of ecology. Ecology 85(7):1771–1789CrossRefGoogle Scholar
  13. Campbell A, Frazer B, Gilbert N, Gutierrez A, Mackauer M (1974) Temperature requirements of some aphids and their parasites. J Appl Ecol 11(2):431–438CrossRefGoogle Scholar
  14. Cesaraccio C, Donatella S, Duce P, Snyder R (2001) An improved model for determining degree-day values from daily temperature data. Int J Biometeorol 45(4):161–169CrossRefGoogle Scholar
  15. Charlwood JD, Smith T, Billingsley PF, Takken W, Lyimo EOK, Meuwissen JHET (1997) Survival and infection probabilities of anthropophagic anophelines from an area of high prevalence of plasmodium falciparum in humans. Bull Entomol Res 87(5):445–453CrossRefGoogle Scholar
  16. Corley J, Bruzzone O (2009) Delayed emergence and the success of parasitoids in biological control. Biol Control 51(3):471–474CrossRefGoogle Scholar
  17. Craig M, Snow R, le Sueur D (1999) A climate-based distribution model of malaria transmission in sub-Saharan Africa. Parasitol Today 15(3):7CrossRefGoogle Scholar
  18. Dabbs G (2010) Caution! All data are not created equal: The hazards of using National Weather Service data for calculating accumulated degree days. Forensic Sci Int 202(1–3):e49–e52CrossRefGoogle Scholar
  19. Dahlsten D, Rowney D, Tait S (1994) Development of integrated pest management programs in urban forests: the elm beetle (Xanthogaleruca luteola (Müller)) in California, USA. For Ecol Manag 65(1):31–44CrossRefGoogle Scholar
  20. ECAD (2011) European Climate Assessment and Dataset, European Climate Support Network. Accessed April 2011
  21. Elliott R, Mann L, Olfert O (2009) Calendar and degree-day requirements for emergence of adult wheat midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae) in Saskatchewan, Canada. Crop Prot 28(7):588–594CrossRefGoogle Scholar
  22. Gilbert E, Powell J, Logan J, Bentz B (2004) Comparison of three models predicting developmental milestones given environmental and individual variation. Bull Math Biol 66(6):1821–1850CrossRefGoogle Scholar
  23. Gould J, Venette R, Winograd D (2005) Effect of temperature on development and population parameters of Copitarsia decolora (Lepidoptera: Noctuidae). Environ Entomol 34(3):548–556CrossRefGoogle Scholar
  24. Gutierrez AP, Ponti L, Hoddle M, Almeida RP, Irvin N (2011) Geographic distribution and relative abundance of the invasive glassy-winged sharpshooter: effects of temperature and egg parasitoids. Environ Entomol 40(4):755–769CrossRefGoogle Scholar
  25. Hagstrum D, Milliken G (1988) Quantitative analysis of temperature, moisture, and diet factors affecting insect development. Ann Entomol Soc Am 81(4):539–546Google Scholar
  26. Hardman J (1976) Life table data for use in deterministic and stochastic simulation models predicting the growth of insect populations under Malthusian conditions. Can Entomol 108(9):897–906CrossRefGoogle Scholar
  27. Hartley S, Krushelnycky P, Lester P (2010) Integrating physiology, popultion dynamics and climate to make multi-scale predictions for the spread of an invasive insect: the argentine ant at haleakala national park, hawaii. Ecography 33:83–94CrossRefGoogle Scholar
  28. Hawkins E, Sutton R (2009) The potential to narrow uncertainty in regional climate predicitons. Bull Am Meteorol Soc 90(8):1095–1107CrossRefGoogle Scholar
  29. Hemerik L, van Nes E (2008) A new release of insim: A temperature-dependent model for insect development. Proc Neth Entomol Soc Meet 19:147–155Google Scholar
  30. Hemerik L, Busstra C, Mols P (2004) Predicting the temperature-dependent natural population expansion of the western corn rootworm, Diabrotica virgifera. Entomol Exp Appl 111:59–69CrossRefGoogle Scholar
  31. Higley LG, Pedigo LP, Ostlie KR (1986) Degday: A program for calculating degre-days, and assumptions behind the degree-day approach. Environ Entomol 15(5):999–1016Google Scholar
  32. Hilbert D, Logan J (1983) Empirical model of nymphal development for the migratory grasshopper, Melanoplus sanguinipes (Orthoptera, Acrididae). Environ Entomol 12(1):1–5Google Scholar
  33. Killeen G, McKenzie F, Foy B, Schieffelin C, Billingsley P, Beier J (2000) A simplified model for predicting malaria entomologic inoculation rates based on entomologic and parasitologic parameters relevant to control. Am J Trop Med Hyg 62(5):535–544Google Scholar
  34. Kilpatrick A, Fonseca D, Ebel G, Reddy M, Kramer L (2010) Spatial and temporal variation in vector competence of Culex pipiens and Cx. restuans mosquitoes for West Nile Virus. Am J Trop Med Hyg 83(3):607–613CrossRefGoogle Scholar
  35. Kontodimas D, Eliopoulos P, Stathas G, Economou L (2004) Comparative temperature-dependent development of Nephus includens and Nephus bisignatus preying on Planococcus citri: Evaluation of a linear and various nonlinear models using specific criteria. Environ Entomol 33(1):1–11CrossRefGoogle Scholar
  36. Lactin D, Holliday N, Johnson D, Craigen R (1995) Improved rate model of temperature-dependent development by arthropods. Environ Entomol 24(1):68–75Google Scholar
  37. Lardeux F, Cheffort J (1997) Temperature thresholds and statistical modelling of larval Wuchereria bancrofti (Filariidea: Onchocercidae) developmental rates. Parasitology 114(2):123–134CrossRefGoogle Scholar
  38. Liang S, Spear R, Seto E, Hubbard A, Qiu D (2005) A multi-group model of Schistosoma japonicum transmission dynamics and control: model calibration and control prediction. Trop Med Int Health 10(3):263–278CrossRefGoogle Scholar
  39. Lindsay S, Hole D, Hutchinson R, Richards S, Willis S (2010) Assessing the future threat from vivax malaria in the United Kingdom using two markedly different modelling approaches. Malaria J 9(1):1–8CrossRefGoogle Scholar
  40. Lobell D, Bonfils C, Duffy P (2007) Climate change uncertainty for daily minimum and maximum temperature: A model inter-comparison. Geophys Res Lett 34(5):1–5Google Scholar
  41. Logan J, Powell J (2001) Ghost forests, global warming, and the mountain pine beetle (Coleoptera: Scolytidae). Am Entomol 47(3):160–173Google Scholar
  42. Logan J, Wollkind D, Hoyt S, Tanigoshi L (1976) An analytic model for description of temperature-dependent rate phenomena in arthropods. Environ Entomol 5(6):1133–1140Google Scholar
  43. Logan J, Wolesensky W, Joern A (2007) Insect development under predation risk, variable temperature, and variable food quality. Math Biosci Eng 4(1):47–65Google Scholar
  44. Lopez C, Sans A, Asin L, EizaGuirre M (2001) Phenological model for Sesamia nonagrioides (Lepidoptera: Noctuidae). Environ Entomol 30(1):23–30CrossRefGoogle Scholar
  45. McMaster G, Wilhelm W (1997) Growing degree-days: one equation, two interpretations. Agric For Meteorol 87(4):291–300CrossRefGoogle Scholar
  46. Molnar P, Kutz S, Hoar B, Dobson A (2013) Metabolic approaches to understanding climate change impacts on seasonal host-macroparasite dynamics. Ecol Lett 16:9–21CrossRefGoogle Scholar
  47. Mols P, Diederik D (1996) Insim a simulation environment for pest forecasting and simulation of pest-natural enemy interaction. Acta Horticultura 416:255–262Google Scholar
  48. Moore J, Liang S, Akullian A, Remais J (2012) Cautioning the use of degree-day models for climate change projections in the presence of parametric uncertainty. Ecol Appl 22(8):2237–2247CrossRefGoogle Scholar
  49. Mordecai EA, Paaijmans KP, Johnson LR, Balzer C, Ben-Horin T, Moor E, McNally A, Pawar S, Ryan SJ, Smith TC, Lafferty KD (2013) Optimal temperature for malaria transmission is dramatically lower than previously predicted. Ecol Lett 16(1):22–30CrossRefGoogle Scholar
  50. Nahrung H, Schutze M, Clarke A, Duffy M, Dunlop E, Lawson S (2008) Thermal requirements, field mortality and population phenology modelling of Paropsis atomaria Olivier, an emergent pest in subtropical hardwood plantations. For Ecol Manag 255(8-9):3515–3523CrossRefGoogle Scholar
  51. Naves P, de Sousa E (2009) Threshold temperatures and degree-day estimates for development of post-dormancy larvae of Monochamus galloprovincialis (Coleoptera: Cerambycidae). J Pest Sci 82(1):1–6CrossRefGoogle Scholar
  52. NOAA (2011) US Climate Reference Network. Accessed 25 April 2011
  53. Obrycki J, Kring T (1998) Predaceous coccinellidae in biological control. Annu Rev Entomol 43(1):295–321CrossRefGoogle Scholar
  54. Ogden N, Bigras-Poulin M, O’Callaghan C, Barker I, Lindsay L, Maarouf A, Smoyer-Tomic K, Waltner-Toews D, Charron D (2005) A dynamic population model to investigate effects of climate on geographic range and seasonality of the tick Ixodes scapularis. Int J Parasitol 35(4):375–389CrossRefGoogle Scholar
  55. Ogden N, Maarouf A, Barker I, Bigras-Poulin M, Lindsay L, Morshed M, O’Callaghan C, Ramay F, Waltner-Toews D, Charron D (2006) Climate change and the potential for range expansion of the lyme disease vector of Ixodes scapularis in Canada. Int J Parasitol 36(1):63–70CrossRefGoogle Scholar
  56. Paaijmans K, Read A, Thomas M (2009) Understanding the link between malaria risk and climate. P Natl Acad Sci 106(33):13,844–13,849CrossRefGoogle Scholar
  57. Paaijmans K, Blanford S, Bell A, Blanford J, Read A, Thomas M (2010a) Influence of climate on malaria transmission depends on daily temperature variation. P Natl Acad Sci 107(34):15,135–15,139CrossRefGoogle Scholar
  58. Paaijmans K, Imbahale S, Thomas M, Takken W (2010b) Relevant microclimate for determining the development rate of malaria mosquitoes and possible implications of climate change. Malaria J 9(196):1–8Google Scholar
  59. Powell J, Bentz B (2009) Connecting phenological predictions with population growth rates for mountain pine beetle, an outbreak insect. Landscape Ecol 24(5):657–672CrossRefGoogle Scholar
  60. Powell J, Logan J (2005) Insect seasonality: circle map analysis of temperature-driven life cycles. Theor Popul Biol 67(3):161–179CrossRefGoogle Scholar
  61. Pruess KP (1983) Day-degree methods for pest management. Environ Entomol 12(3):613–619Google Scholar
  62. Reaumur R (1735) Observations du thermometre faites pendant l’annee 1735 comparees a celles qui ont ete faites sous la ligne a l’isle-de-france, a alger et en quelques-unes de nos isles de l’amerique. Memoires de l’Academie Royale des Sciences pp 545–576Google Scholar
  63. Reicosky D, Winkelman L, Baker J, Baker D (1989) Accuracy of hourly air temperatures calculated from daily minima and maxima. Agric For Meteorol 46(3):193–209CrossRefGoogle Scholar
  64. Remais J, Hubbard A, Zisong W, Spear R (2007) Weather-driven dynamics of an intermediate host: mechanistic and statistical population modelling of Oncomelania hupensis. J Appl Ecol 44(4):781–791CrossRefGoogle Scholar
  65. Ren C, Ma B, Burrows V, Zhou J, Hu Y, Guo L, Wei L, Sha L, Deng L (2007) Evaluation of early mature naked oat varieties as a summer-seeded crop in dryland northern climate regions. Field Crop Res 103(3):248–254CrossRefGoogle Scholar
  66. Roltsch W, Zalom F, Strawn A, Strand J, Pitcairn M (1999) Evaluation of several degree-day estimation methods in California climates. Int J Biometeorol 42(4):169–176CrossRefGoogle Scholar
  67. Roy M, Brodeur J, Cloutier C (2002) Relationship between temperature and developmental rate of Stethorus punctillum (Coleoptera : Coccinellidae) and its prey Tetranychus mcdanieli (Acarina : Tetranychidae). Environ Entomol 31(1):177–187CrossRefGoogle Scholar
  68. Samways M (1989) Climate diagrams and biological control: an example from the areography of the ladybird Chilocorus nigritus (Fabricius, 1798) (Insecta, Coleoptera, Coccinellidae). J Biogeogr 16(4):345–351CrossRefGoogle Scholar
  69. Sanchez-Ramos I, Castanera P (2001) Development and survival of Tyrophagus putrescentiae (Acari : Acaridae) at constant temperatures. Environ Entomol 30(6):1082–1089CrossRefGoogle Scholar
  70. Schoener T (2011) The newest synthesis: understanding the interplay of evolutionary and ecological dynamics. Science 331(6016):426–429CrossRefGoogle Scholar
  71. Sharpe P, DeMichele D (1977) Reaction-kinetics of poikilotherm development. J Theor Biol 64(4):649–670CrossRefGoogle Scholar
  72. Sharratt B, Sheaffer C, Baker D (1989) Base temperature for the application of the growing-degree-day model to field-grown alfalfa. Field Crop Res 21(2):95–102CrossRefGoogle Scholar
  73. Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K, Tignor M, Miller H (2007) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change, 2007. Tech. rep.Google Scholar
  74. Tobin P, Nagarkatti S, Saunders M (2001) Modeling development in grape berry moth (Lepidoptera : Tortricidae). Environ Entomol 30(4):692–699CrossRefGoogle Scholar
  75. Trudgill D, Honek A, Li D, Van Straalen N (2005) Thermal time – concepts and utility. Ann Appl Biol 146(1):1–14CrossRefGoogle Scholar
  76. University of California IPMP (2011) Run models and calculate degree-days. Accessed 19 May 2011
  77. University of Illinois PRI (2011) Daily pest degree-day accumulations., Accessed 19 May
  78. University of Wisconsin EAW (2011) Degree day calculator. Accessed 19 May 2011
  79. Visser M, Both C (2005) Shifts in phenology due to global climate change: the need for a yardstick. P Roy Soc Lond B Biol Sci 272(1581):2561–2569CrossRefGoogle Scholar
  80. Wagner T, Wu H, Sharpe P, Coulson R (1984) Modeling distributions of insect development time - a literature review and application of the Weibull function. Ann Entomol Soc Am 77(5):475–487Google Scholar
  81. Wagner T, Olson R, Willers J (1991) Modeling arthropod development time. J Agric Entomol 8(4):251–270Google Scholar
  82. Wang J (1960) A critique of the heat unit approach to plant response studies. Ecology 41(4):790CrossRefGoogle Scholar
  83. Wilson L, Barnett W (1983) Degree-days: an aid in crop and pest management. Calif Agric 37(1):4–7Google Scholar
  84. Yamamura K, Kiritani K (1998) A simple method to estimate the potential increase in the number of generations under global warming in tempearte zones. Appl Entomol Zool 33(2):289–298Google Scholar
  85. Yang G, Gemperli A, Vounatsou P, Tanner M, Zhou X, Utzinger J (2006) A growing degree-day based time-series analysis for prediction of Schistosomiasis japonicum transmission in Jiangsu Province, China. Am J Trop Med Hyg 75(3):549–555Google Scholar
  86. Yang G, Gao Q, Zhou S, Malone J, McCarroll J, Tanner M, Vounatsou P, Bergquist R, Utzinger J, Zhou X (2010) Mapping and predicting malaria transmission in the People’s Republic of China, using integrated biology-driven and statistical models. Geospatial Health 5(1):11–22Google Scholar
  87. Yang S, Logan J, Coffey D (1995) Mathematical formulae for calculating the base temperature for growing degree days. Agric For Meteorol 74(1-2):61–74CrossRefGoogle Scholar
  88. Zhang Z, Ong S, Peng W, Zhou Y, Zhuang J, Zhao G, Jiang Q (2008) A model for the prediction of Oncomelania hupensis in the lake and marshland regions, China. Parasitol Int 57(2):121–131CrossRefGoogle Scholar
  89. Zhou X, Yang G, Wang X, Hong Q, Sun L, Malone J, Kristensen T, Bergquist N, Utzinger J (2008) Potential impact of climate change on schistosomiasis transmission in China. Am J Trop Med Hyg 78(2):188–194Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Program in Population Biology, Ecology and Evolution, Graduate Division of Biological and Biomedical SciencesEmory UniversityAtlantaUSA
  2. 2.Department of Evolution and EcologyUniversity of California DavisDavisUSA
  3. 3.Department of Environmental Health, Rollins School of Public HealthEmory UniversityAtlantaUSA

Personalised recommendations