Acta Biotheoretica

, Volume 61, Issue 1, pp 91–107 | Cite as

Mathematical Modeling of Respiratory System Mechanics in the Newborn Lamb

  • Virginie Le Rolle
  • Nathalie Samson
  • Jean-Paul Praud
  • Alfredo I. Hernández
Regular Article

Abstract

In this paper, a mathematical model of the respiratory mechanics is used to reproduce experimental signal waveforms acquired from three newborn lambs. As the main challenge is to determine specific lamb parameters, a sensitivity analysis has been realized to find the most influent parameters, which are identified using an evolutionary algorithm. Results show a close match between experimental and simulated pressure and flow waveforms obtained during spontaneous ventilation and pleural pressure variations acquired during the application of positive pressure, since root mean square errors equal to 0.0119, 0.0052 and 0.0094. The identified parameters were discussed in light of previous knowledge of respiratory mechanics in the newborn.

Keywords

Model Animal experimentation Sensitivity analysis Parameter identification 

Reference

  1. Asher M, Coates A, Collinge J, Milic-Emili J (1982) Measurement of pleural pressure in neonates. J Appl Physiol 52:491–494Google Scholar
  2. Athanasiades A, Ghorbel F, Clark JWJ, Niranjan SC, Olansen J, Zwischenberger JB, Bidani A (2000) Energy analysis of a nonlinear model of the normal human lung. J Biol Syst 8:115–139Google Scholar
  3. Avanzolini G, Barbini P, Bernardi F, Cevenini G, Gnudi G (2001) Role of the mechanical properties of tracheobronchial airways in determining the respiratory resistance time course. Ann Biomed Eng 29:575–586CrossRefGoogle Scholar
  4. Calabrese P, Baconnier P, Laouani A, Fontecave-Jallon J, Guméry PY, Eberhard A, Benchetrit G (2010) A simple dynamic model of respiratory pump. Acta Biotheor 58:265–275CrossRefGoogle Scholar
  5. Costantino ML, Bagnoli P, Dini G, Fiore GB, Soncini M, Corno C, Acocella F, Colombi R (2004) A numerical and experimental study of compliance and collapsibility of preterm lamb tracheae. J Biomech 37:1837–1847CrossRefGoogle Scholar
  6. Crooke PS, Marini JJ, Hotchkiss JR (2002) Modeling recruitment maneuvers with a variable compliance model for pressure controlled ventilation. Comput Math Methods Med 4:197–207Google Scholar
  7. Davey MG, Johns DP, Harding R (1998) Postnatal development of respiratory function in lambs studied serially between birth and 8 weeks. Respir Physiol 113:83–93CrossRefGoogle Scholar
  8. Davis GM, Coates AL, Dalle D, Bureau MA (1988) Measurement of pulmonary mechanics in the newborn lamb: a comparison of three techniques. J Appl Physiol 64:972–981CrossRefGoogle Scholar
  9. Davis GM, Coates AL, Papageorgiou A, Bureau MA (1988) Direct measurement of static chest wall compliance in animal and human neonates. J Appl Physiol 65:1093–1098Google Scholar
  10. Fontecave-Jallon J, Abdulhay E, Calabrese P, Baconnier P, Guméry PY (2009) A model for mechanical interactions between heart and lungs. Philos Transact A Math Phys Eng Sci 367:4741–4757CrossRefGoogle Scholar
  11. Frappell PB, MacFarlane PM (2005) Development of mechanics and pulmonary reflexes. Respir Physiol Neurobiol 149:143–154CrossRefGoogle Scholar
  12. Gappa M, Jackson E, Pilgrim L, Costeloe K, Stocks J (1996) A new microtransducer catheter for measuring esophageal pressure in infants. Pediatr Pulmonol 22:117–124CrossRefGoogle Scholar
  13. Gaultier C, Praud JP (1990) Respiratory pathology during sleep in children. Rev Mal Respir 7:475–481Google Scholar
  14. Golden J (1972) Mathematical modelling of pulmonary airway dynamics. Rice University, HoustonGoogle Scholar
  15. Guttmann J, Kessler V, Mols G, Hentschel R, Haberthur C, Geiger K (2000) Continuous calculation of intratracheal pressure in the presence of pediatric endotracheal tubes. Crit Care Med 28:1018–1026CrossRefGoogle Scholar
  16. Hernández AI, Le Rolle V, Defontaine A, Carrault G (2009) A multiformalism and multiresolution modelling environment: application to the cardiovascular system and its regulation. Philos Trans Math Phys Eng Sci 367:4923–4940CrossRefGoogle Scholar
  17. Hernández AI, Le Rolle V, Ojeda D, Baconnier P, Fontecave-Jallon J, Guillaud F, Grosse T, Moss RG, Hannaert P, Thomas SR (2011) Integration of detailed modules in a core model of body fluid homeostasis and blood pressure regulation. Prog Biophys Mol Biol 107(1):169–82CrossRefGoogle Scholar
  18. Jakubowska AE, Billings K, Johns DP, Hooper SB, Harding R (1993) Respiratory function in lambs after prolonged oligohydramnios during late gestation. Pediatr Res 34:611–617CrossRefGoogle Scholar
  19. Khirani S, Biot L, Eberhard A, Baconnier P (2001) Positive end expiratory pressure and expiratory flow limitation: a model study. Acta Biotheor 49:277–290CrossRefGoogle Scholar
  20. Le Rolle V, Hernández AI, Carrault G, Samson N, Praud JP (2008) A model of ventilation used to interpret newborn lamb respiratory signals. IEEE EMBC, VancouverGoogle Scholar
  21. Liu CH, Niranjan SC, Clark JWJ, San KY, Zwischenberger JB, Bidani A (1998) Airway mechanics, gas exchange, and blood flow in a nonlinear model of the normal human lung. J Appl Physiol 84:1447–1469Google Scholar
  22. Lu K, Clark JWJ, Ghorbel FH, Ware DL, Bidani A (2001) A human cardiopulmonary system model applied to the analysis of the Valsalva maneuver. Am J Physiol Heart Circ Physiol 281:2661–2679Google Scholar
  23. Manilal-Reddy PI, Al-Jumaily AM (2009) Understanding the use of continuous oscillating positive airway pressure (bubble CPAP) to treat neonatal respiratory disease: an engineering approach. J Med Eng Tech 33:214–222CrossRefGoogle Scholar
  24. Mead J (1969) Contribution of compliance of airways to frequency-dependent behavior of lungs. J Appl Physiol 26:670–673Google Scholar
  25. Michalewicz Z (1994) Genetic algorithms + Data structures = Evolution programs. Springer, New-YorkCrossRefGoogle Scholar
  26. Morris MD (1991) Factorial sampling plans for preliminary computational experiments. Technometrics 33:161–174CrossRefGoogle Scholar
  27. Mortola J (1987) Dynamics of breathing in newborn mammals. Physiol Rev 67:187–243Google Scholar
  28. Mount L (1955) The ventilation flow-resistance and compliance of rat lungs. J Physiol 127:157–167Google Scholar
  29. Otis B, Mckerrow CB, Bartlett RA, Mead J, Selver-Stone MB, McIlroy NJ, Radford EPJ (1956) Mechanical factors in distribution of pulmonary ventilation. J Appl Physiol 8:427–443Google Scholar
  30. Pillow JJ, Hall GL, Karen EW, Jobe AH, Hantos Z, Sly PD (2001) Effects of gestation and antenatal steroid on airway and tissue mechanics in newborn lambs. Am J Respir Crit Care Med 163:1158–1163Google Scholar
  31. Pillow JJ, Sly PD, Hantos Z, Bates JHT (2002) Dependence of intrapulmonary pressure amplitudes on respiratory mechanics during high-frequency oscillatory ventilation in preterm lambs. Pediatr Res 52:538–544CrossRefGoogle Scholar
  32. Pillow JJ, Stocks J, Sly PD, Hantos Z (2005) Partitioning of airway and parenchymal mechanics in unsedated newborn infants. Pediatr Res 58:1210–1215CrossRefGoogle Scholar
  33. Quatember B (2003) Human respiratory system: simulation of breathing mechanics and gas mixing processes based on a non-linear mathematical model, International conference on health sciences simulationGoogle Scholar
  34. Riddle W, Younes M (1981) A model for the relation between respiratory neural and mechanical outputs. II. Methods. J Appl Physiol 51:979–989Google Scholar
  35. Robert R (2007) Modélisation numérique et stratégies de commande du débit expiratoire pour éviter le collapsus des voies respiratoires en ventilation liquidienne totale, University of SherbrookeGoogle Scholar
  36. Rozanek M, Roubik K (2004) Influence of the changes in pulmonary mechanics upon the suitability of artificial lung ventilation strategy. In: Biomedical engineering, Zurich, Acta Press, TrackNumber: 417–132Google Scholar
  37. Schmidt M, Foitzik B, Hochmuth O, Schmalisch G (1998) Computer simulation of the measured respiratory impedance in newborn infants and the effect of the measurement equipment. Med Eng Phys 20:220–228CrossRefGoogle Scholar
  38. Sly PD, Brown KA, Bates JHT, Spier S, Milic-Emili J (1988) Noninvasive determination of respiratory mechanics during mechanical ventilation of neonates: a review of current and future techniques. Pediatr Pulmonol 4:39–47CrossRefGoogle Scholar
  39. Thibault S, Calabrese P, Benchetrit GA, Baconnier P (2004) Effects of resistive loading on breathing variability : non linear analysis and modelling approaches. Adv Exp Med Biol 551:293–298CrossRefGoogle Scholar
  40. Thibault S, Heyer L, Benchetrit GA, Baconnier P (2002) Ventilatory support: a dynamical systems approach. Acta Biotheor 50:269–279CrossRefGoogle Scholar
  41. Tse Ve Koon K, Thebault C, Le Rolle V, Donal E, Hernández A (2010) Atrioventricular delay optimization in cardiac resynchronization therapy assessed by a computer model. Computers in cardiology belfast, Ireland, pp 333–336 Google Scholar
  42. Verbraak AF, Bogaard JM, Beneken JE, Hoorn E, Versprille A (1991) Serial lung model for simulation and parameter estimation in body plethysmography. A Med Biol Eng Comput 29:309–317CrossRefGoogle Scholar
  43. Winkler T, Krause A, Kaiser S (1995) Simulation of mechanical respiration using a multicompartment model for ventilation mechanics and gas exchange. Int J Clin Monit Comput 12:231–239CrossRefGoogle Scholar
  44. Younes M, Riddle W (1981) A model for the relation between respiratory neural and mechanical outputs. I. Theory. J Appl Physiol 51:963–978Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Virginie Le Rolle
    • 1
    • 2
  • Nathalie Samson
    • 3
  • Jean-Paul Praud
    • 3
  • Alfredo I. Hernández
    • 1
    • 2
  1. 1.INSERM, U1099RennesFrance
  2. 2.Université de Rennes 1, LTSIRennesFrance
  3. 3.Department of PediatricsUniversity of SherbrookeSherbrookeCanada

Personalised recommendations