Abstract
Dobzhansky argued that biology only makes sense if life on earth has a shared history. But his dictum is often reinterpreted to mean that biology only makes sense in the light of adaptation. Some philosophers of science have argued in this spirit that all work in ‘proximal’ biosciences such as anatomy, physiology and molecular biology must be framed, at least implicitly, by the selection histories of the organisms under study. Others have denied this and have proposed non-evolutionary ways in which biologists can frame these investigations. This paper argues that an evolutionary perspective is indeed necessary, but that it must be a forward-looking perspective informed by a general understanding of the evolutionary process, not a backward-looking perspective informed by the specific evolutionary history of the species being studied. Interestingly, it turns out that there are aspects of proximal biology that even a creationist cannot study except in the light of a theory of their effect on future evolution.
Similar content being viewed by others
Notes
I am using ‘adaptive’ and ‘adaptation’ in the conventional, neo-Darwinian sense outlined in Sect. 2 above. A trait is adaptive if a Cummins-style (1975) functional analysis of an organism’s fitness assigns a causal function to that trait. Something is an adaptation if it has a ‘modern history’ selective function sensu Godfrey-Smith (1994, see also Griffiths 1992, 1993).
These methods are frequently used to establish what traits are adaptations for (their selected function) as well as whether and how traits are currently adaptive. The account of evolutionary explanation which I advocate in Sect. 7 below would imply that when this occurs these methods are either 1. Applied to hypothesised ancestral organisms in hypothesised ancestral environments, or, 2. Applied to current organisms on the assumption that the selective advantage they now confer is one they also conferred in the past. Criticisms of both these uses of optimality analysis can be found in the literature on ‘adaptationism’ (Dupré 1987; Gould and Lewontin 1978; Orzack and Sober 2001).
On the view I advocate below sterile individuals could be dealt with by analysing the causal contribution of parts and processes to their inclusive fitness, which may be the correct approach for e.g. sterile castes in social insects, or by regarding them as pathological, which may be the correct approach for sterile hybrids e.g. mules.
Some molecular biologists use the term ‘homology’ to mean sequence similarity, and most molecular biologists refer to different forms of homology, resulting from different copying mechanisms, as ‘orthology’, ‘paralogy’ and ‘xenology’ (on this and other aspects of the homology concept see Brigandt 2002, 2003; Griffiths 2006, 2007a).
References
Amundson R, Lauder GV (1994) Function without purpose: the uses of causal role function in evolutionary biology. Biol Philos 9(4):443–470. doi:10.1007/BF00850375
Bigelow J, Pargetter R (1987) Functions. J Philos 54:181–196. doi:10.2307/2027157
Bock WJ, von Wahlert G (1965) Adaptation and the form-function complex. Evolution 19:269–299. doi:10.2307/2406439
Brandon RN (1981) Biological teleology: questions and explanations. Stud Hist Philos Sci 12:91–105. doi:10.1016/0039-3681(81)90015-7
Brigandt I (2002) Homology and the origin of correspondence. Biol Philos 17:389–407. doi:10.1023/A:1020196124917
Brigandt I (2003) Homology in comparative, molecular and evolutionary biology. J Exp Zool (Mol Dev Evol) 299B:9–17. doi:10.1002/jez.b.36
Burian RM (2005) The epistemology of development, evolution, and genetics. Cambridge University Press, Cambridge
Canfield J (1964) Teleological explanation in biology. Br J Philos Sci 14:285–295. doi:10.1093/bjps/XIV.56.285
Christensen W (1996) A complex systems theory of teleology. Biol Philos 11(3):301–319. doi:10.1007/BF00128784
Clout MN, Elliott GP, Robertson BC (2002) Effects of supplementary feeding on the offspring sex ratio of kakapo: a dilemma for the conservation of a polygynous parrot. Biol Conserv 107(1):13–18. doi:10.1016/S0006-3207(01)00267-1
Cummins R (1975) Functional analysis. J Philos 72:741–765. doi:10.2307/2024640
Cummins R (1983) The nature of psychological explanation. Bradford/MIT, Cambridge
Davies PS (2001) Norms of nature: naturalism and the nature of functions. MIT Press, Cambridge
Dawkins MS, Halliday TR, Dawkins R (eds) (1991) The Tinbergen legacy. Chapman and Hall, London
Delancey C (2006) Ontology and teleofunctions. Synthese 150:69–98. doi:10.1007/s11229-004-6257-8
Diamond J (1982) Big-bang reproduction and ageing in male marsupial mice. Nature 298(5870):115–116. doi:10.1038/298115a0
Diamond J (1997) Guns, germs, and steel: the fates of human societies. W. W. Norton & Company, New York
Dobzhansky T (1973) Nothing in biology makes sense except in the light of evolution. Am Biol Teach 35:125–129
Dupré J (ed) (1987) The latest on the best: essays on optimality & evolution. MIT Press, Cambridge
Edin BB (2008) Assigning biological functions: making sense of causal chains. Synthese 161(2):203–218. doi:10.1007/s11229-007-9160-2
Gasking EB (1967) Investigations into generation, 1651–1828. Johns Hopkins Press, Baltimore
Gintis H (2007) Book Review: David J. Buller. 2005. Adapting minds: evolutionary psychology and the persistent quest for human nature. J Bioeconomics 9(2):191–200. doi:10.1007/s10818-007-9023-4
Godfrey-Smith P (1993) Functions: consensus without unity. Pac Philos Q 74:196–208
Godfrey-Smith P (1994) A modern history theory of functions. Noûs 28:344–362
Godfrey-Smith P (2000) Three kinds of adaptationism. In: Orzack S, Sober E (eds) Optimality and adaptation. Cambridge University Press, Cambridge, pp 335–357
Gould SJ, Lewontin R (1978) The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc R Soc Lond B Biol Sci 205:581–598
Gould JA, Vrba ES (1982) Exaptation—a missing term in science of form. Paleobiology 8:4–15
Griffiths PE (1992) Adaptive explanation and the concept of a vestige. In: Griffiths PE (ed) Trees of life: essays in philosophy of biology. Kluwer, Dordrecht, pp 111–131
Griffiths PE (1993) Functional analysis & proper function. Br J Philos Sci 44:409–422. doi:10.1093/bjps/44.3.409
Griffiths PE (2006) Function, homology and character individuation. Philos Sci 73(1):1–25. doi:10.1086/510172
Griffiths PE (2007a) The phenomena of homology. Biol Philos 22(5):643–658. doi:10.1007/s10539-007-9090-x
Griffiths PE (2007b) Evo-Devo meets the mind: towards a developmental evolutionary psychology. In: Sansom R, Brandon RN (eds) Integrating development and evolution. MIT Press, Cambridge, pp 195–225
Lewens T (2004) Organisms and artifacts: design in nature and elsewhere. MIT Press, Cambridge
Lorenz KZ (1966) Evolution of ritualisation in the biological and cultural spheres. Philos Trans R Soc Lond 251:273–284. doi:10.1098/rstb.1966.0011
Mayr E (1961) Cause and effect in biology. Science 131:1501–1506. doi:10.1126/science.134.3489.1501
McLaughlin P (2001) What functions explain: functional explanation and self-reproducing systems. Cambridge University Press, Cambridge
Millikan RG (1984) Language, thought and other biological categories. MIT Press, Cambridge
Millikan RG (2002) Biofunctions: two paradigms. In: Cummins R, Ariew A, Perlman M (eds) Functions new readings in the philosophy of psychology and biology. Oxford University Press, Oxford, pp 113–143
Moore HDM, Martin M, Birkhead TR (1999) No evidence for killer sperm or other selective interactions between human spermatozoa in ejaculates of different males in vitro. Proc R Soc Biol Sci 266(1436):2343–2350. doi:10.1098/rspb.1999.0929
Nahvi A, Sudarsan N, Ebert MS, Zou X, Brown KL, Breaker RR (2002) Genetic control by a metabolite binding mRNA. Chem Biol 9(9):1043–1049. doi:10.1016/S1074-5521(02)00224-7
Neander K (1991a) Functions as selected effects: the conceptual analyst’s defense. Philos Sci 58:168–184. doi:10.1086/289610
Neander K (1991b) The teleological notion of “function”. Australas J Philos 69(4):454–468. doi:10.1080/00048409112344881
Neander K (2002) Types of traits: the importance of functional homologues. In: Ariew A, Cummins R, Perlman M (eds) Functions: new essays in the philosophy of biology and psychology. Oxford University Press, Oxford
Orzack S, Sober E (eds) (2001) Optimality and adaptation. Cambridge University Press, Cambridge
Papineau D (1987) Reality and representation. Blackwell, New York
Pigliucci M, Kaplan JM (2006) Making sense of evolution: the conceptual foundations of evolutionary theory. University of Chicago Press, Chicago
Pittendrigh CS (1958) Adaptation, natural selection and behavior. In: Roe A, Simpson GG (eds) Behavior and evolution. Yale University Press, New Haven, pp 390–416
Rosenberg A (2001) The character concept: adaptationalism to molecular developments. In: Wagner GP (ed) The character concept in evolutionary biology. Academic Press, San Diego, pp 201–216
Rosenberg A (2006) Darwinian reductionism or, how to stop worrying and love molecular biology. University of Chicago Press, Chicago
Schlosser G (1998) Self re-production and functionality: a systems-theoretical approach to teleological explanation. Synthese 116:303–354. doi:10.1023/A:1005073307193
Sober E (1984) The nature of selection: evolutionary theory in philosophical focus. MIT Press, Cambridge
Tinbergen N (1963) On the aims and methods of ethology. Z Tierpsychol 20:410–433
Weber M (2005) Philosophy of experimental biology. Cambridge University Press, Cambridge
Wimsatt WC (1972) Teleology and the logical structure of function statements. Stud Hist Philos Sci 3:1–80. doi:10.1016/0039-3681(72)90014-3
Wimsatt WC (2007) Re-engineering philosophy for limited beings: piecewise approximations to reality. Harvard University Press, Cambridge
Winther RG (2006) Parts and theories in compositional biology. Biol Philos 21(4):471–499. doi:10.1007/s10539-005-9002-x
Wouters A (1995) Viability explanation. Biol Philos 10(4):435–457. doi:10.1007/BF00857593
Wouters A (2003) Four notions of biological function. Stud Hist Philos Biol Biomed Sci 34:633–668. doi:10.1016/j.shpsc.2003.09.006
Wouters A (2005a) The functional perspective in evolutionary biology. In: Reydon TAC, Hemerik L (eds) Current themes in theoretical biology. Springer, Berlin, pp 33–69
Wouters A (2005b) The functions debate in philosophy. Acta Biotheor 53:123–151. doi:10.1007/s10441-005-5353-6
Wouters A (2007) Design explanation: determining the constraints on what can be alive. Erkenntnis 67(1):65–80. doi:10.1007/s10670-007-9045-2
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Griffiths, P.E. In What Sense Does ‘Nothing Make Sense Except in the Light of Evolution’?. Acta Biotheor 57, 11–32 (2009). https://doi.org/10.1007/s10441-008-9054-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10441-008-9054-9