Skip to main content
Log in

Modelling of Cells Bioenergetics

  • Regular Article
  • Published:
Acta Biotheoretica Aims and scope Submit manuscript

Abstract

This paper presents an integrated model describing the control of Saccharomyces cerevisiae yeast cells bioenergetics. This model describes the oxidative and respirofermentative metabolism. The model assumes that the mitochondria of the Saccharomyces cerevisiae cells are charged with NADH during the tricarboxylic acid cycle, and NADH is discharged from mitochondria later in the electron transport system. Selected effects observed in the Saccharomyces cerevisiae eucaryotic cells, including the Pasteur's and Crabtree effects, are also modeled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

TCA:

Tricarboxylic acid

V(+)NADH :

The rate of mitochondria charging with NADH

V(-)NADH :

The rate of NADH discharging from mitochondria

fATP:

Positive feedback for ATP

cycle(n) :

The nth DOC oscillation cycle

portion(n) :

The nth glucose portion

DOC:

Dissolved O2 concentration in the culture medium

DOCset :

The set value of DOC

RQ:

Respiratory quotient

RQset :

The set value of RQ

RQ0 :

The respiratory quotient when no ethanol is being produced

RQmax :

The maximum value of respiratory quotient in the current DOC oscillation cycle

RQmax(n) :

The maximum value of respiratory quotient in the nth DOC oscillation cycle

MaxGluCon:

The maximum value of glucose concentration in the culture medium in the DOC oscillation cycle

GluCon:

The glucose concentration in the culture medium

GluConcritical :

The critical value of glucose concentration, denotes such glucose concentration in the culture medium which, if exceeded, causes fermentation in good aerobic conditions

mtNADHmin :

The minimal level of intramitochondrial NADH

mtNADHnormal :

The normal level of intramitochondrial NADH

mtNADHcritical :

The critical level of intramitochondrial NADH

EPR:

The ethanol production rate

OUR:

The oxygen uptake rate

References

  • Bakker BM, Overkamp KM, van Maris AJA, Kötter P, Luttik MA, van Dijken JP, Pronk JT (2001) Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae. FEMS Microbiol Rev 25:15–37

    Article  Google Scholar 

  • Balaban RS (2006) Modeling mitochondrial function. Am J Physiol Cell Physiol 291:C1107–C1113

    Article  Google Scholar 

  • Bellgardt KH (2000) Baker’s yeast production. In: Schügerl K, Bellgardt KH (eds) Bioreaction engineering: modeling and control. Springer, Berlin Heidelberg New York, 277–320

    Google Scholar 

  • Chen KC, Wu WT, Chang KY (1986) Computer control for continuous cultivation of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 24:113–116

    Google Scholar 

  • Cortassa S, Aon MA (1994) Metabolic control analysis of glycolysis and branching to ethanol production in chemostat cultures of Saccharomyces cerevisiae under carbon, nitrogen, or phosphate limitations. Enzyme Microb Technol 16:761–770

    Article  Google Scholar 

  • Cortassa S, Aon MA (1997) Distributed control of the glycolytic flux in wild-type cells and catabolite repression mutants of Saccharomyces cerevisiae growing in carbon-limited chemostat cultures. Enzyme Microb Technol 21:596–602

    Article  Google Scholar 

  • Cortassa S, Aon MA, Marban E, Winslow RL, O’Rourke B (2003) An integrated model of cardiac mitochondrial energy metabolism and calcium dynamics. Biophys J 84:2734–2755

    Google Scholar 

  • Daum G (2000) The yeast Saccharomyces cerevisiae, a eukaryotic model for cell biology. Microsc Res Tech 51:493–495

    Article  Google Scholar 

  • Dellweg H, Bronn WK, Hartmeier W (1977) Respiration rates of growing and fermenting yeast. Kemia-Kemi 12:611–615

    Google Scholar 

  • Enfors SO, Hedenberg J, Olsson K (1990) Simulation of the dynamics in the baker’s yeast process. Bioprocess Eng 5:191–198

    Article  Google Scholar 

  • Engelberg D, Perlman R, Levitzki A (1989) Transmembrane signalling in Saccharomyces cerevisiae. Cell Signal 1:1–7

    Article  Google Scholar 

  • Forest L, San Martín J, Padilla F, Chassat F, Giroud F, Demongeot J (2004) Morphogenetic processes: application to cambial growth dynamics. Acta Biotheor 52:415–438

    Article  Google Scholar 

  • Galazzo JL, Bailey JE (1990) Fermentation pathway kinetics and metabolic flux control in suspended and immobilized Saccharomyces cerevisiae. Enzyme Microb Technol 12:162–172

    Article  Google Scholar 

  • Gillespie CS, Proctor CJ, Boys RJ, Shanley DP, Wilkinson DJ, Kirkwood TB (2004) A mathematical model of ageing in yeast. J Theor Biol 229:189–196

    Article  Google Scholar 

  • Harris DA, Das AM (1991) Control of mitochondrial ATP synthesis in the heart. Biochem J 280:561–573

    Google Scholar 

  • He RQ, Li CY, Zhao XA (1996) Estimation of the optimal concentrations of residual sugar and cell growth rate for a fed-batch culture of Saccharomyces cerevisiae. Appl Biochem Biotechnol 60:229–244

    Article  Google Scholar 

  • Hess B (1979) The glycolytic oscillator. J Exp Biol 81:7–14

    Google Scholar 

  • Hospodka J (1966) Oxygen-absorption rate-controlled feeding of substrate into aerobic microbial cultures. Biotechnol Bioeng 8:117–134

    Article  Google Scholar 

  • Kasperski A, Miskiewicz T (2008) Optimization of pulsed feeding in a baker’s yeast process with dissolved oxygen concentration as a control parameter. Biochem Eng J. doi:10.1016/j.bej.2008.01.002

    Google Scholar 

  • Käppeli O, Sonnleitner B (1986) Regulation of sugar metabolism in Saccharomyces-type yeast: experimental and conceptual considerations. Crit Rev Biotechnol 4:299–325

    Article  Google Scholar 

  • McCormack JG, Halestrap AP, Denton RM (1990) Role of calcium ions in regulation of mammalian intramitochondrial metabolism. Physiol Rev 70:391–425

    Google Scholar 

  • Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism. Nature 191:144–148

    Article  Google Scholar 

  • Noda M, Yamashita S, Takahashi N, Eto K, Shen L, Izumi K, Daniel S, Tsubamoto Y, Nemoto T, Iino M, Kasai H, Sharp GWG, Kadowaki T (2002) Switch to anaerobic glucose metabolism with NADH accumulation in the ß-cell model of mitochondrial diabetes: characteristics of ßHC9 cells deficient in mitochondrial DNA transcription. J Biol Chem 277:41817–41826

    Article  Google Scholar 

  • Overkamp KM, Bakker BM, Kotter P (2000) In vivo analysis of the mechanisms for oxidation of cytosolic NADH by Saccharomyces cerevisiae mitochondria. J Bacteriol 182:2823–2830

    Article  Google Scholar 

  • Petrik M, Käppeli O, Fiechter A (1983) An expanded concept for the glucose effect in the yeast Saccharomyces cerevisiae: involvement of short- and long-term regulation. J Gen Microbiol 129:43–49

    Google Scholar 

  • Postma E, Verduyn C, Scheffers WA, van Dijken JP (1989) Enzymic analysis of the Crabtree effect in glucose-limited chemostat cultures of Saccharomyces cerevisiae. Appl Environ Microbiol 55:468–477

    Google Scholar 

  • Pritchard L, Kell DB (2002) Schemes of flux control in a model of Saccharomyces cerevisiae glycolysis. Eur J Biochem 269:3894–3904

    Article  Google Scholar 

  • Przybyla-Zawislak B, Gadde DM, Ducharme K, McCammon MT (1999) Genetic and biochemical interactions involving tricarboxylic acid cycle (TCA) function using a collection of mutants defective in all TCA cycle genes. Genetics 152:153–166

    Google Scholar 

  • Ratledge C (1991) Yeast physiology—a micro-synopsis. Bioprocess Eng 6:195–203

    Article  Google Scholar 

  • Rizzi M, Baltes M, Theobald U, Reuss M (1997) In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae: II Mathematical model. Biotechnol Bioeng 55:592–608

    Article  Google Scholar 

  • Snoep JL (2005) The Silicon Cell initiative: working towards a detailed kinetic description at the cellular level. Curr Opin Biotech 16:336–343

    Article  Google Scholar 

  • Sonnleitner B, Käppeli O (1986) Growth of Saccharomyces cerevisiae is controlled by its limited respiratory capacity: formulation and verification of a hypothesis. Biotechnol Bioeng 28:927–937

    Article  Google Scholar 

  • Teusink B, Passarge J, Reijenga CA, Esgalhado E, van der Weijden CC, Schepper M, Walsh MC, Bakker BM, van Dam K, Westerhoff HV, Snoep JL (2000) Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing biochemistry. Eur J Biochem 267:5313–5329

    Article  Google Scholar 

  • Verduyn C, Zomerdijk TPL, van Dijken JP, Scheffers WA (1984) Continuous measurement of ethanol production by aerobic yeast suspensions with an enzyme electrode. Appl Microbiol Biotechnol 19:181–185

    Article  Google Scholar 

  • Wang HY, Cooney CL, Wang D.I.C (1977) Computer-aided. baker’s yeast fermentation. Biotechnol Bioeng 19:68–86

    Google Scholar 

Download references

Acknowledgments

I am grateful to Prof. Tadeusz Lachowicz at the University of Wroclaw, Poland and Prof. Mykhailo V. Gonchar from the Institute of Cell Biology, NAS, Ukraine for their help and critical reading of this article. I am also sincerely indebted to Prof. Tadeusz Miskiewicz and Ms Alicja Stempniak from the Department of Bioprocess Engineering, Wroclaw University of Economics, Poland, for their help in the preparation and execution of my experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Kasperski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kasperski, A. Modelling of Cells Bioenergetics. Acta Biotheor 56, 233–247 (2008). https://doi.org/10.1007/s10441-008-9050-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10441-008-9050-0

Keywords

Navigation