Skip to main content
Log in

Generalised Biological Function

Contribution from the 2003 Meeting of the French Society of Theoretical Biology, guest edited by Pierre Baconnier and Alfredo Hernandez

  • Published:
Acta Biotheoretica Aims and scope Submit manuscript

Abstract

A physiological function can be described as a cycle based on a cusp bifurcation set in catastrophe theory. This cycle involves four phases that are successively developed along a functional potential, which is used to perform a given physiological act. The work we present is firstly based on a detailed study of the global function of vision, which covers a vast field extending from the molecular to cerebral scale. We then present other examples of generalised functions by expanding the frame of reference, from the scale of an organ to the scale of a whole organism with predation function, and to the scale of a social group with crisis management. We observed that the criteria remain the same, whether the function is considered on the scale of a cell membrane or a group of individuals organised into a cohort. Moreover, a so-called generalised function can be broken down into simpler sub-functions, each phase of the initial function containing the physiological act of each sub-function. It seems thus that a fractal extension may characterise the four-cusp spiral. This spiral is increasingly large as the types of sub-functions are multiplied. In functions relative to sociological science, such as crisis management, which are not natural but built and designed by humans, close attention must be paid to following the rules of these generalised biological functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bruter, C.P. (1982). Les architectures du feu; considérations sur les modèles, pp. 73–89. Flammarion ed.

  • Bruter, C.P. (1984). Topologie et perception, tome 2. Maloine ed. Paris.

  • Caretta, A., A. Cavaggioni, R. Grimaldi and R.T. Sorbi (1988). Regulation of cyclic GMP binding to retinal rod membranes by calcium. European Journal of Biochemistry 177: 139–146.

    Article  Google Scholar 

  • Chabre, M. (1985). Trigger and amplification mechanisms in visual phototransduction. Annual Review of Biophysical Chemistry 14: 331–360.

    Google Scholar 

  • Crick, F. and C. Koch (2003). A framework for consciousness. Nature neuroscience 6: 119.

    Article  Google Scholar 

  • Daveloose, D., H. Vezin, F. Basse and J. Viret (1993). Fluidity of chicken ventricular plasma membranes during development in-ovo and after birth: Spin labelling and fluorescence studies. Journal of Molecular and Cellular Cardiology 25: 1439–1444.

    Article  Google Scholar 

  • Fung, B.K.K. and L. Stryer (1980). Photolysed rhodopsin catalyses the exchange of GTP for GDP in retinal rod outer segment membranes. Proceedings of National Academy of Science USA 77: 2500–2504.

    Google Scholar 

  • Guyton, A.C. (1984). Neurophysiologie. Masson ed.

  • Haxby, J.V., C.L. Grady and B. Horwitz (1991). Dissociation of object and spatial visual processing pathways in human extrastriate cortex. Proceedings of National Academy of Science USA 88: 1621–1625.

    Google Scholar 

  • Kuhn, H., N. Bennett, M. Michel-Villaz and M. Chabre (1981). Interactions between phosphoexcited rhodopsin and GTP binding protein: Kinetics and stoichiometric analyses from light scattering changes. Proceedings of National Academy of Science USA 78: 6873– 6877.

    Google Scholar 

  • Magistretti, P.J. and L. Pellerin (1999). Mécanismes cellulaires du métabolisme énergétique cérébral; implications pour l'imagerie fonctionnelle. Revue internationale de biologie et de médecine 15, 4: 451–456.

    Google Scholar 

  • Mellet, E., L. Petit, B. Mazoyer, M. Denis and N. Tzourio (1999). Imagerie cérébrale de l'imagerie mentale. Revue internationale de biologie et de médecine 15(4): 475–482.

    Google Scholar 

  • Thom, R. (1980). Modèles mathématiques de la morphogenèse, pp. 139–153. Christian Bourgeois 2nd. ed.

  • Thom, R. (1990). Structure et fonction en biologie aristotélicienne. In: apologie du logos, pp. 256–266. Hachette ed.

  • Viret, J. and D. Daveloose (1989). Biophysical interpretation of membrane fluidity by Catastrophe Theory. Journal of Theoretical Biology 140: 51–82.

    Google Scholar 

  • Viret, J. (1992). Théorie des catastrophes et fonction physiologique membranaire. Acta Biotheoretica 40: 245–251.

    Article  Google Scholar 

  • Vuong, T.M., M. Chabre and L. Stryer (1984). Millisecond activation of transducin in the cyclic nucleotide cascade of vision. Nature 311: 659–661.

    Article  Google Scholar 

  • Wilden, U., S.W. Hall and H. Kuhn (1986). Phosphodiesterase activation by photoexcited rhodopsin is quenched when rhodopsin is phosphorylated and binds the intrinsic 48-kDa protein of rod outer segments. Proceedings of National Academy of Science USA 83: 1174–1178.

    Google Scholar 

  • Yau, K.W. and K. Nakatani (1985). Light- induced reduction of cytoplasmic free calcium in retinal outer segment. Nature 313: 579–582.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques Viret.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Viret, J. Generalised Biological Function. Acta Biotheor 53, 393–409 (2005). https://doi.org/10.1007/s10441-005-4893-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10441-005-4893-0

Key Words

Navigation