Skip to main content

Advertisement

Log in

A Mathematical Model for Assessing How Obesity-Related Factors Aggravate Diabetes

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

Obesity-related factors have been associated with beta cell dysfunction, potentially leading to Type 2 diabetes. To address this issue, we developed a comprehensive obesity-based diabetes model incorporating fat cells, glucose, insulin, and beta cells. We established the model’s global existence, non-negativity, and boundedness. Additionally, we introduced a delay to examine the effects of impaired insulin production resulting from beta-cell dysfunction. Bifurcation analyses were conducted for delay and non-delay models, exploring the model’s dynamic transitions through backward and forward Hopf bifurcations. Utilizing the maximal Pontryagin principle, we formulated and evaluated an optimal control problem to mitigate diabetic complications by reducing the prevalence of overweight individuals and halting disease progression. Comparative graphical outputs were generated to demonstrate the beneficial effects of glucose-regulating medication and regular exercise in managing diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

No data was used for the research described in the article.

References

  1. Al-Goblan, A.S., Al-Alfi, M.A., Khan, M.Z.: Mechanism linking diabetes mellitus and obesity. Diabetes Metab. Syndr. Obes. 7, 587–591 (2014)

    Article  Google Scholar 

  2. DeFronzo, R.A., Ferrannini, E., Groop, L., Henry, R.R., Herman, W.H., Holst, J.J., Hu, F.B., Kahn, C.R., Raz, I., Shulman, G.I., et al.: Type 2 diabetes mellitus. Nat. Rev. Dis. Primers 1(1), 1–22 (2015)

    Article  Google Scholar 

  3. Jain, A., Roy, P.: Obesity and Alzheimer’s: an attempt to decipher the role of obesity in blood–brain barrier degradation. Chaos Solitons Fractals 166, 112902 (2023)

    Article  MathSciNet  Google Scholar 

  4. Estrada, E.: Covid-19 and sars-cov-2. Modeling the present, looking at the future. Phys. Rep. 869, 1–51 (2020)

    Article  MathSciNet  Google Scholar 

  5. Heesterbeek, H., Anderson, R.M., Andreasen, V., Bansal, S., De Angelis, D., Dye, C., Eames, K.T., Edmunds, W.J., Frost, S.D., Funk, S., et al.: Modeling infectious disease dynamics in the complex landscape of global health. Science 347(6227), aaa4339 (2015)

    Article  Google Scholar 

  6. Topp, B., Promislow, K., Devries, G., Miura, R.M., Finegood, D.T.: A model of \(\beta \)-cell mass, insulin, and glucose kinetics: pathways to diabetes. J. Theor. Biol. 206(4), 605–619 (2000)

    Article  Google Scholar 

  7. Yang, B., Li, J., Haller, M.J., Schatz, D.A., Rong, L.: Modeling the progression of type 2 diabetes with underlying obesity. PLoS Comput. Biol. 19(2), e1010914 (2023)

    Article  Google Scholar 

  8. Cantley, J., Ashcroft, F.M.: Q&a: insulin secretion and type 2 diabetes: why do \(\beta \)-cells fail? BMC Biol. 13(1), 1–7 (2015)

    Article  Google Scholar 

  9. Cerf, M.E.: Beta cell dysfunction and insulin resistance. Front. Endocrinol. 4, 37 (2013)

    Article  Google Scholar 

  10. Chalupová, L., Halupova, L., Zakovska, A., Krejci, G., Svestak, M., Stejskal, D., et al.: Ctrp1: a molecular link between obesity and hypertension. J. Mol. Biomark. Diagn. 7(289), 2 (2016)

    Google Scholar 

  11. Winter, W.D., DeJongh, J., Post, T., Ploeger, B., Urquhart, R., Moules, I., Eckland, D., Danhof, M.: A mechanism-based disease progression model for comparison of long-term effects of pioglitazone, metformin and gliclazide on disease processes underlying type 2 diabetes mellitus. J. Pharmacokinet. Pharmacodyn. 33, 313–343 (2006)

    Article  Google Scholar 

  12. Banzi, W., Kambutse, I., Dusabejambo, V., Rutaganda, E., Minani, F., Niyobuhungiro, J., Mpinganzima, L., Ntaganda, J.M.: Mathematical modelling of glucose-insulin system and test of abnormalities of type 2 diabetic patients. Int. J. Math. Math. Sci. 2021, 1–12 (2021)

    Article  MathSciNet  Google Scholar 

  13. Bergman, R.N., Phillips, L.S., Cobelli, C., et al.: Physiologic evaluation of factors controlling glucose tolerance in man: measurement of insulin sensitivity and beta-cell glucose sensitivity from the response to intravenous glucose. J. Clin. Invest. 68(6), 1456–1467 (1981)

    Article  Google Scholar 

  14. Kovács, L.: Extension of the Bergman minimal model for the glucose-insulin interaction. Period. Polytech., Electr. Eng. Arch. 50(1–2), 23–32 (2006)

    Google Scholar 

  15. Ha, J., Satin, L.S., Sherman, A.S.: A mathematical model of the pathogenesis, prevention, and reversal of type 2 diabetes. Endocrinology 157(2), 624–635 (2016)

    Article  Google Scholar 

  16. Organization, W.H., et al.: World Health Organization Obesity and Overweight (2019)

    Google Scholar 

  17. Parmar, M.Y.: Obesity and type 2 diabetes mellitus. Int. Obes. Diabetes 4(4), 1–2 (2018)

    MathSciNet  Google Scholar 

  18. Menke, A., Rust, K.F., Fradkin, J., Cheng, Y.J., Cowie, C.C.: Associations between trends in race/ethnicity, aging, and body mass index with diabetes prevalence in the United States: a series of cross-sectional studies. Ann. Intern. Med. 161(5), 328–335 (2014)

    Article  Google Scholar 

  19. Ye, M., Robson, P.J., Eurich, D.T., Vena, J.E., Xu, J.-Y., Johnson, J.A.: Changes in body mass index and incidence of diabetes: a longitudinal study of Alberta’s tomorrow project cohort. Prev. Med. 106, 157–163 (2018)

    Article  Google Scholar 

  20. Mahmuda, F., Akhter, M., Nath, R.K.: Obesity in the pathogenesis of type 2 diabetes. KYAMC J. 4(1), 357–361 (2013)

    Article  Google Scholar 

  21. Hierons, S.J., Marsh, J.S., Wu, D., Blindauer, C.A., Stewart, A.J.: The interplay between non-esterified fatty acids and plasma zinc and its influence on thrombotic risk in obesity and type 2 diabetes. Int. J. Mol. Sci. 22(18), 10140 (2021)

    Article  Google Scholar 

  22. Lazar, M.A.: How obesity causes diabetes: not a tall tale. Science 307(5708), 373–375 (2005)

    Article  Google Scholar 

  23. Abd-Rabo, M.A., Tao, Y., Yuan, Q., Mohamed, M.S.: Bifurcation analysis of glucose model with obesity effect. Alex. Eng. J. 60(5), 4919–4930 (2021)

    Article  Google Scholar 

  24. Ku, L.-F.: A new application of Routh-Hurwitz criterion (1966)

  25. Korobeinikov, A.: Global properties of basic virus dynamics models. Bull. Math. Biol. 66(4), 879–883 (2004)

    Article  MathSciNet  Google Scholar 

  26. Ma, L., Hu, D., Zheng, Z., Ma, C.-Q., Liu, M.: Multiple bifurcations in a mathematical model of glioma-immune interaction. Commun. Nonlinear Sci. Numer. Simul. 123, 107282 (2023)

    Article  MathSciNet  Google Scholar 

  27. Upadhyay, R.K., Roy, P.: Spread of a disease and its effect on population dynamics in an eco-epidemiological system. Commun. Nonlinear Sci. Numer. Simul. 19(12), 4170–4184 (2014)

    Article  MathSciNet  Google Scholar 

  28. Forde, J.E.: Delay Differential Equation Models in Mathematical Biology. University of Michigan Press, Ann Arbor (2005)

    Google Scholar 

  29. Zheng, Q., Shen, J., Wang, Z.: Pattern formation and oscillations in reaction–diffusion model with p53-mdm2 feedback loop. Int. J. Bifurc. Chaos 29(14), 1930040 (2019)

    Article  MathSciNet  Google Scholar 

  30. Cooke, K., Van den Driessche, P., Zou, X.: Interaction of maturation delay and nonlinear birth in population and epidemic models. J. Math. Biol. 39, 332–352 (1999)

    Article  MathSciNet  Google Scholar 

  31. Zhao, T.: Global periodic-solutions for a differential delay system modeling a microbial population in the chemostat. J. Math. Anal. Appl. 193(1), 329–352 (1995)

    Article  MathSciNet  Google Scholar 

  32. Campbell, S.A., Edwards, R., van den Driessche, P.: Delayed coupling between two neural network loops. SIAM J. Appl. Math. 65(1), 316–335 (2004)

    Article  MathSciNet  Google Scholar 

  33. Rakkiyappan, R., Velmurugan, G., Rihan, F.A., Lakshmanan, S.: Stability analysis of memristor-based complex-valued recurrent neural networks with time delays. Complexity 21(4), 14–39 (2016)

    Article  MathSciNet  Google Scholar 

  34. Smolen, P., Baxter, D.A., Byrne, J.H.: A reduced model clarifies the role of feedback loops and time delays in the drosophila circadian oscillator. Biophys. J. 83(5), 2349–2359 (2002)

    Article  Google Scholar 

  35. Chuedoung, M., Sarika, W., Lenbury, Y.: Dynamical analysis of a nonlinear model for glucose–insulin system incorporating delays and \(\beta \)-cells compartment. Nonlinear Anal., Theory Methods Appl. 71(12), e1048–e1058 (2009)

    Article  Google Scholar 

  36. Forys, U.: Delayed equations in applications. Tech. Rep., (2015)

  37. Al-Hussein, A.-B.A., Rahma, F., Jafari, S.: Hopf bifurcation and chaos in time-delay model of glucose-insulin regulatory system. Chaos Solitons Fractals 137, 109845 (2020)

    Article  MathSciNet  Google Scholar 

  38. Gaff, H., Schaefer, E.: Optimal control applied to vaccination and treatment strategies for various epidemiological models. Math. Biosci. Eng. 6(3), 469–492 (2009)

    Article  MathSciNet  Google Scholar 

  39. Fleming, W., Rishel, R., Marchuk, G., Balakrishnan, A., Borovkov, A., Makarov, V., Rubinov, A., Liptser, R., Shiryayev, A., Krassovsky, N., et al.: Applications of Mathematics, Deterministic and Stochastic Optimal Control (1975)

    Book  Google Scholar 

  40. Gaff, H.D., Schaefer, E., Lenhart, S.: Use of optimal control models to predict treatment time for managing tick-borne disease. J. Biol. Dyn. 5(5), 517–530 (2011)

    Article  MathSciNet  Google Scholar 

  41. Lenhart, S., Workman, J.T.: Optimal Control Applied to Biological Models. CRC Press, Boca Raton (2007)

    Book  Google Scholar 

  42. Sharomi, O., Malik, T.: Optimal control in epidemiology. Ann. Oper. Res. 251, 55–71 (2017)

    Article  MathSciNet  Google Scholar 

  43. Maggio, C.A., Pi-Sunyer, F.X.: Obesity and type 2 diabetes. Endocrinol. Metab. Clin. 32(4), 805–822 (2003)

    Article  Google Scholar 

  44. Sonmez, A., Yumuk, V., Haymana, C., Demirci, I., Barcin, C., Kıyıcı, S., Güldiken, S., Örük, G., Ozgen Saydam, B., Baldane, S., et al.: Impact of obesity on the metabolic control of type 2 diabetes: results of the Turkish nationwide survey of glycemic and other metabolic parameters of patients with diabetes mellitus (temd obesity study). Obes. Facts 12(2), 167–178 (2019)

    Article  Google Scholar 

  45. Ruze, R., Liu, T., Zou, X., Song, J., Chen, Y., Xu, R., Yin, X., Xu, Q.: Obesity and type 2 diabetes mellitus: connections in epidemiology, pathogenesis, and treatments. Front. Endocrinol. 14, 1161521 (2023)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Ani Jain: Analysis, Data Collection, Development of Coding and Mathematical Techniques, Simulation.

Parimita Roy: Model Building, Validation, Development of Computational Skills and Preparing the research paper.

Corresponding author

Correspondence to Parimita Roy.

Ethics declarations

Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

$$\begin{aligned} A_{11} =& \dfrac{b G I p}{(1 + G p + F q)^{2}} - \dfrac{b I}{1 + G p + F q} -d_{1}, \\ A_{12} =&-\dfrac{b G}{1 + G p + F q}, \\ A_{13} =&0, \\ A_{14} =& c + \dfrac{b G I q}{(1+ G p + F q)^{2}}, \\ A_{21} =& \dfrac{B \mu}{ G+k_{1}}-\dfrac{B G \mu}{( G +k_{1})^{2}}, \\ A_{22} =& -d_{2}, \\ A_{23} =&\dfrac{G \mu e^{-\eta \tau}}{ G + k_{1}}, \\ A_{24} =& 0, \\ A_{31} =& \dfrac{B h}{G + k_{2}}- \dfrac{B G h}{(G + k_{2})^{2}}, \\ A_{32} =&0, \\ A_{33} =& \dfrac{G h}{G + k_{2}}-d_{3} - \delta F^{2} , \\ A_{34} =& -2 B \delta F, \\ A_{41} =& 0, \\ A_{42} =& 0, \\ A_{43} =& 0, \\ A_{44} =& (1 - \dfrac{F}{k_{3}}) r - \dfrac{F r}{k_{3}}. \end{aligned}$$

\(p_{1} = d_{1} + d_{2} + d_{3} + \delta F^{2} - \dfrac{G h}{G + k_{2}} - \dfrac{ b G I p}{v^{2}} + \dfrac{b I}{v} - r + \dfrac{2 F r}{ k_{3}} \), and \(v = (1 + G p + F q)\),

\(p_{2} = \dfrac{ b G^{2} h I p}{(G + k_{2}) v^{2}}-\dfrac{b d_{3} G I p}{v^{2}} - \dfrac{ b \delta F^{2} G I p}{v^{2}} + \dfrac{b d_{3} I}{ v} + \dfrac{b \delta F^{2} I}{v} - \dfrac{ b G h I}{(G + k_{2}) v} - d_{3} r - \delta F^{2} r + \dfrac{G h r}{G + k_{2}} + \dfrac{2 d_{3} F r}{k_{3}} + \dfrac{2 \delta F^{3} r}{k_{3}} - \dfrac{ 2 F G h r}{(G + k_{2}) k_{3}} + \dfrac{b G I p r}{v^{2}} - \dfrac{ 2 b F G I p r}{k_{3} v^{2}} - \dfrac {b I r}{v} + \dfrac{2 b F I r}{k_{3} v } + d_{1} \left (d_{2} + d_{3} + \delta F^{2} - \dfrac{G h}{G + k_{2}} - r + \dfrac{2 F r}{k_{3}}\right ) + d_{2} \bigg (d_{3} + \delta F^{2} - \dfrac{G h}{G + k_{2}} - \dfrac{b G I p}{v^{2}} + \dfrac{ b I}{v} - r + \dfrac{2 F r}{k_{3}} \bigg )+ \dfrac{ b B G k_{1} \mu}{(G + k_{1})^{2} v}\),

\(p_{3}= \dfrac{d_{2} ( d_{3} (G + k_{2}) -G h + \delta F^{2} (G + k_{2})) (2 F - k_{3}) r}{(G + k_{2}) k_{3}} + \dfrac{1}{(G + k_{2}) k_{3}}(d_{1} d_{2} ( d_{3} (G + k_{2}) -G h + \delta F^{2} (G + k_{2})) k_{3} + d_{1} (G (d_{2} + d_{3} + \delta F^{2} - h) + (d_{2} + d_{3} + \delta F^{2}) k_{2}) (2 F - k_{3}) r) + \dfrac{1}{v^{2}} b ( \dfrac{2 d_{3} F I r}{k_{3}}-d_{3} I r + \delta F^{2} G I p r - \dfrac{G^{2} h I p r}{ G + k_{2}} - \dfrac{2 \delta F^{3} G I p r}{k_{3}} + \dfrac{ 2 F G^{2} h I p r}{(G + k_{2}) k_{3}} - d_{3} F I q r + \dfrac{2 d_{3} F^{2} I q r}{ k_{3}} - \delta F^{2} I v r + \dfrac{G h I v r}{ G + k_{2}} + \dfrac{2 \delta F^{3} I v r}{k_{3}} - \dfrac{ 2 F G h I v r}{(G + k_{2}) k_{3}} + \dfrac{ d_{2} I (1 + F q) ( d_{3} (G + k_{2}) k_{3} -G h k_{3} + \delta F^{2} (G + k_{2}) k_{3} + (G + k_{2}) (2 F - k_{3}) r)}{(G + k_{2}) k_{3}} + \dfrac{ B d_{3} G k_{1} \mu}{(G + k_{1})^{2}} + \dfrac{B d_{3} G^{2} k_{1} p \mu}{(G + k_{1})^{2}} + \dfrac{ B d_{3} F G k_{1} q \mu}{(G + k_{1})^{2}} - \dfrac{ B \delta F^{2} G^{2} v \mu}{(G + k_{1})^{2}} + \dfrac{ B \delta F^{2} G v \mu}{G + k_{1}} + \dfrac{ B G^{3} h v \mu}{(G + k_{1})^{2} (G + k_{2})} - \dfrac{ B G^{2} h v \mu}{(G + k_{1}) (G + k_{2})} + \dfrac{ B G^{2} v r \mu}{(G + k_{1})^{2}} - \dfrac{ B G v r \mu}{G + k_{1}} - \dfrac{ 2 B F G^{2} v r \mu}{(G + k_{1})^{2} k_{3}} + \dfrac{ 2 B F G v r \mu}{(G + k_{1}) k_{3}})\),

\(p_{4} = \dfrac{( d_{3} (G + k_{2})-G h + \delta F^{2} (G + k_{2})) (2 F - k_{3}) r (b d_{2} I (G + k_{1})^{2} (1 + F q) + d_{1} d_{2} (G + k_{1})^{2} v^{2} + b B G k_{1} v \mu )}{(G + k_{1})^{2} (G + k_{2}) k_{3} v^{2}} \),

\(q_{1} = \dfrac{b B G^{2} h k_{2} u}{v(G + k_{1}) (G + k_{2})^{2}}\),

\(q_{2} = \dfrac{b B G^{2} h k_{2} (2 F - k_{3}) r \mu}{(G + k_{1}) (G + k_{2})^{2} k_{3} v} \).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, A., Roy, P. A Mathematical Model for Assessing How Obesity-Related Factors Aggravate Diabetes. Acta Appl Math 191, 8 (2024). https://doi.org/10.1007/s10440-024-00652-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10440-024-00652-3

Keywords

Navigation