Skip to main content
Log in

Global Classical Solutions to a Predator-Prey Model with Nonlinear Indirect Chemotaxis Mechanism

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

We deal with the following predator-prey model involving nonlinear indirect chemotaxis mechanism

$$ \left \{ \textstyle\begin{array}{l@{\quad }l} u_{t}=\Delta u+\xi \nabla \cdot (u \nabla w)+a_{1}u(1-u^{r_{1}-1}-b_{1}v), \ &\ \ x\in \Omega , \ t>0, \\ v_{t}=\Delta v-\chi \nabla \cdot (v \nabla w)+a_{2}v(1-v^{r_{2}-1}+b_{2}u), \ &\ \ x\in \Omega , \ t>0, \\ w_{t}=\Delta w-w+z^{\gamma }, \ &\ \ x\in \Omega , \ t>0, \\ 0=\Delta z-z+u^{\alpha }+v^{\beta }, \ &\ \ x\in \Omega , \ t>0 , \end{array}\displaystyle \right . $$

under homogeneous Neumann boundary conditions in a bounded and smooth domain \(\Omega \subset \mathbb{R}^{n}\) (\(n\geq 1\)), where the parameters \(\xi ,\chi ,a_{1},a_{2},b_{1},b_{2},\alpha ,\beta ,\gamma >0\). It has been shown that if \(r_{1}>1\), \(r_{2}>2\) and \(\gamma (\alpha +\beta )<\frac{2}{n}\), then there exist some suitable initial data such that the system has a global classical solution \((u,v,w,z)\), which is bounded in \(\Omega \times (0,\infty )\). Compared to the previous contributions, in this work, the boundedness criteria are only determined by the power exponents \(r_{1}\), \(r_{2}\), \(\alpha \), \(\beta \), \(\gamma \) and spatial dimension \(n\) instead of the coefficients of the system and the sizes of initial data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alikakos, N.D.: \(L^{p}\) bounds of solutions of reaction-diffusion equations. Commun. Partial Differ. Equ. 4, 827–868 (1979)

    Google Scholar 

  2. Amorim, P., Telch, B.: A Chemotaxis predator-prey model with indirect pursuit-evasion dynamics and parabolic signal. J. Math. Anal. Appl. 500, 125128 (2021)

    MathSciNet  Google Scholar 

  3. Bai, X., Winkler, M.: Equilibration in a fully parabolic two-species Chemotaxis system with competitive kinetics. Indiana Univ. Math. J. 65, 553–583 (2016)

    MathSciNet  Google Scholar 

  4. Cao, X.: Boundedness in a three-dimensional Chemotaxis-haptotaxis model. Z. Angew. Math. Phys. 67, 11 (2016)

    MathSciNet  Google Scholar 

  5. Cao, X.: Large time behavior in the logistic Keller-Segel model via maximal Sobolev regularity. Discrete Contin. Dyn. Syst., Ser. B 22, 3369–3378 (2017)

    MathSciNet  Google Scholar 

  6. Ciéslak, T., Winkler, M.: Finite-time blow-up in a quasilinear system of Chemotaxis. Nonlinearity 21, 1057–1076 (2008)

    MathSciNet  Google Scholar 

  7. Ding, M., Wang, W.: Global boundedness in a quasilinear fully parabolic Chemotaxis system with indirect signal production. Discrete Contin. Dyn. Syst., Ser. B 24, 4665–4684 (2019)

    MathSciNet  Google Scholar 

  8. Fu, S., Miao, L.: Global existence and asymptotic stability in a predator-prey Chemotaxis model. Nonlinear Anal., Real World Appl. 54, 103079 (2020)

    MathSciNet  Google Scholar 

  9. Gajewski, H., Zacharias, K.: Global behavior of a reaction-diffusion system modelling Chemotaxis. Math. Nachr. 195, 77–114 (1998)

    MathSciNet  Google Scholar 

  10. Hong, L., Tian, M., Zheng, S.: An attraction-repulsion Chemotaxis system with nonlinear productions. J. Math. Anal. Appl. 484, 123703 (2020)

    MathSciNet  Google Scholar 

  11. Horstmann, D., Wang, G.: Blow-up in a Chemotaxis model without symmetry assumptions. Eur. J. Appl. Math. 12, 159–177 (2001)

    MathSciNet  Google Scholar 

  12. Horstmann, D., Winkler, M.: Boundedness vs. blow-up in a Chemotaxis system. J. Differ. Equ. 215, 52–107 (2005)

    MathSciNet  Google Scholar 

  13. Jin, H.: Boundedness of the attraction-repulsion Keller-Segel system. J. Math. Anal. Appl. 422, 1463–1478 (2015)

    MathSciNet  Google Scholar 

  14. Jin, H., Wang, Z.: Boundedness, blowup and critical mass phenomenon in competing Chemotaxis. J. Differ. Equ. 260, 162–196 (2016)

    MathSciNet  Google Scholar 

  15. Keller, E., Segel, L.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399–415 (1970)

    MathSciNet  Google Scholar 

  16. Kowalczyk, R.: Preventing blow-up in a Chemotaxis model. J. Math. Anal. Appl. 305, 566–588 (2005)

    MathSciNet  Google Scholar 

  17. Ladyzhenskaya, O., Solonnikov, V., Uralceva, N.: Linear and Quasilinear Equations of Parabolic Type. Am. Math. Soc., Providence (1968)

    Google Scholar 

  18. Li, Y.: Emergence of large densities and simultaneous blow-up in a two-species Chemotaxis system with competitive kinetic. Discrete Contin. Dyn. Syst., Ser. B 24, 5461–5480 (2019)

    MathSciNet  Google Scholar 

  19. Li, X., Wang, Y.: On a fully parabolic Chemotaxis system with Lotka-Volterra competitive kinetics. J. Math. Anal. Appl. 471, 584–598 (2019)

    MathSciNet  Google Scholar 

  20. Li, G., Tao, Y., Winkler, M.: Large time behavior in a predator-prey system with indirect pursuit-evasion interaction. Discrete Contin. Dyn. Syst., Ser. B 25, 4383–4396 (2020)

    MathSciNet  Google Scholar 

  21. Liu, D., Tao, Y.: Boundedness in a Chemotaxis system with nonlinear signal production. Appl. Math. J. Chin. Univ. Ser. B 31, 379–388 (2016)

    MathSciNet  Google Scholar 

  22. Liu, X., Zheng, J.: Convergence rates of solutions in a predator-prey system with indirect pursuit-evasion interaction in domains of arbitrary dimension. Discrete Contin. Dyn. Syst., Ser. B 28, 2269–2293 (2023)

    MathSciNet  Google Scholar 

  23. Ma, Y., Mu, C., Qiu, S.: Boundedness and asymptotic stability in a two-species predator-prey Chemotaxis model. Discrete Contin. Dyn. Syst., Ser. B 27, 4077–4095 (2022)

    MathSciNet  Google Scholar 

  24. Miao, L., Yang, H., Fu, S.: Global boundedness in a two-species predator-prey Chemotaxis model. Appl. Math. Lett. 111, 106639 (2021)

    MathSciNet  Google Scholar 

  25. Mizukami, M.: Boundedness and asymptotic stability in a two-species Chemotaxis-competition model with signal dependent sensitivity. Discrete Contin. Dyn. Syst., Ser. B 22, 2301–2319 (2017)

    MathSciNet  Google Scholar 

  26. Mizukami, M.: Boundedness and stabilization in a two-species Chemotaxis-competition system of parabolic-parabolic-elliptic type. Math. Methods Appl. Sci. 41, 234–249 (2018)

    MathSciNet  Google Scholar 

  27. Mizukami, M.: Improvement of conditions for asymptotic stability in a two-species Chemotaxis- competition model with signal-dependent sensitivity. Discrete Contin. Dyn. Syst., Ser. S 13, 269–278 (2020)

    MathSciNet  Google Scholar 

  28. Qi, D., Ke, Y.: Large time behavior in a predator-prey system with pursuit-evasion interaction. Discrete Contin. Dyn. Syst., Ser. B 27, 4531–4549 (2022)

    MathSciNet  Google Scholar 

  29. Qiu, S., Mu, C., Yi, H.: Boundedness and asymptotic stability in a predator-prey Chemotaxis system with indirect pursuit-evasion dynamics. Acta Math. Sci. 42, 1035–1057 (2022)

    MathSciNet  Google Scholar 

  30. Ren, G.: Global solvability in a Keller-Segel-growth system with indirect signal production. Calc. Var. Partial Differ. Equ. 61, 207 (2022)

    MathSciNet  Google Scholar 

  31. Ren, G., Liu, B.: Global dynamics for an attraction-repulsion Chemotaxis model with logistic source. J. Differ. Equ. 268, 4320–4373 (2020)

    MathSciNet  Google Scholar 

  32. Senba, T., Suzuki, T.: Parabolic system of Chemotaxis: blowup in a finite and the infinite time. Methods Appl. Anal. 8, 349–367 (2001)

    MathSciNet  Google Scholar 

  33. Shanmugasundaram, G., Arumugam, G., Erhardt, A., Nagarajan, N.: Global existence of solutions to a two-species predator-prey parabolic Chemotaxis system. Int. J. Biomath. 15, 2250054 (2022)

    MathSciNet  Google Scholar 

  34. Stinner, C., Tello, J., Winkler, M.: Competitive exclusion in a two-species Chemotaxis model. J. Math. Biol. 68, 1607–1626 (2014)

    MathSciNet  Google Scholar 

  35. Tao, Y., Winkler, M.: Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity. J. Differ. Equ. 252, 692–715 (2012)

    MathSciNet  Google Scholar 

  36. Tello, J.I., Winkler, M.: A Chemotaxis system with logistic source. Commun. Partial Differ. Equ. 32, 849–877 (2007)

    MathSciNet  Google Scholar 

  37. Tello, J.I., Winkler, M.: Stabilization in a two-species Chemotaxis system with a logistic source. Nonliearity 25, 1413–1425 (2012)

    MathSciNet  Google Scholar 

  38. Wang, C., Zhu, J.: Global boundedness in an attraction-repulsion Chemotaxis system involving nonlinear indirect signal mechanism. J. Math. Anal. Appl. 531, 127876 (2024)

    MathSciNet  Google Scholar 

  39. Wang, C., Wang, P., Zhu, X.: Global dynamics in a Chemotaxis system involving nonlinear indirect signal secretion and logistic source. Z. Angew. Math. Phys. 74, 237 (2023)

    MathSciNet  Google Scholar 

  40. Wang, D., Zeng, F., Jiang, M.: Global existence and boundedness of solutions to a two-species Chemotaxis-competition system with singular sensitivity and indirect signal production. Z. Angew. Math. Phys. 74, 33 (2023)

    MathSciNet  Google Scholar 

  41. Wang, C., Zhao, L., Zhu, X.: A blow-up result for attraction-repulsion system with nonlinear signal production and generalized logistic source. J. Math. Anal. Appl. 518, 126679 (2023)

    MathSciNet  Google Scholar 

  42. Wang, C., Zhu, Y., Zhu, X.: Long time behavior of the solution to a Chemotaxis system with nonlinear indirect signal production and logistic source. Electron. J. Qual. Theory Differ. Equ. 2023, 11 (2023)

    MathSciNet  Google Scholar 

  43. Winkler, M.: Boundedness in the higher-dimensional parabolic-parabolic Chemotaxis system with logistic source. Commun. Partial Differ. Equ. 35, 1516–1537 (2010)

    MathSciNet  Google Scholar 

  44. Winkler, M.: Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model. J. Differ. Equ. 248, 2889–2905 (2010)

    MathSciNet  Google Scholar 

  45. Winkler, M.: Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system. J. Math. Pures Appl. 100, 748–767 (2013)

    MathSciNet  Google Scholar 

  46. Winkler, M.: A critical blow-up exponent in a Chemotaxis system with nonlinear signal production. Nonlinearity 31, 2031–2056 (2018)

    MathSciNet  Google Scholar 

  47. Winkler, M.: Finite-time blow-up in low-dimensional Keller-Segel systems with logistic-type superlinear degradation. Z. Angew. Math. Phys. 69, 40 (2018)

    MathSciNet  Google Scholar 

  48. Wu, S.: Boundedness in a quasilinear Chemotaxis model with logistic growth and indirect signal production. Acta Appl. Math. 176 (2021)

  49. Wu, S.: Global boundedness of a diffusive prey-predator model with indirect prey-taxis and predator-taxis. J. Math. Anal. Appl. 507, 125820 (2022)

    MathSciNet  Google Scholar 

  50. Xiang, T.: Sub-logistic source can prevent blow-up in the 2D minimal Keller-Segel Chemotaxis system. J. Math. Phys. 59, 081502 (2018)

    MathSciNet  Google Scholar 

  51. Xiang, Y., Zheng, P., Xing, J.: Boundedness and stabilization in a two-species Chemotaxis-competition system with indirect signal production. J. Math. Anal. Appl. 507, 125825 (2022)

    MathSciNet  Google Scholar 

  52. Yi, H., Mu, C., Xu, G., Dai, P.: A blow-up result for the Chemotaxis system with nonlinear signal production and logistic source. Discrete Contin. Dyn. Syst., Ser. B 26, 2537–2559 (2020)

    MathSciNet  Google Scholar 

  53. Zhang, W., Niu, P., Liu, S.: Large time behavior in a Chemotaxis model with logistic growth and indirect signal production. Nonlinear Anal., Real World Appl. 50, 484–497 (2019)

    MathSciNet  Google Scholar 

  54. Zheng, J., Zhang, P., Liu, X.: Some progress for global existence and boundedness in a multi-dimensional parabolic-elliptic two-species Chemotaxis system with indirect pursuit-evasion interaction. Appl. Math. Lett. 144, 108729 (2023)

    MathSciNet  Google Scholar 

  55. Zheng, J., Zhang, P., Liu, X.: Global existence and boundedness for an N-dimensional parabolic-ellipticchemotaxis-fluid system with indirect pursuit-evasion. J. Differ. Equ. 367, 199–228 (2023)

    Google Scholar 

Download references

Acknowledgements

We would like to deeply thank the editor and anonymous reviewers for their insightful and constructive comments, which greatly improve the work.

Funding

This work was partially supported by the National Natural Science Foundation of China No. 11901500, the Natural Science Foundation of Henan Province No. 242300421695, Scientific and Technological Key Projects of Henan Province Nos. 232102310227, 222102320425 and Nanhu Scholars Program for Young Scholars of XYNU No. 2020017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Jian Wang.

Ethics declarations

Competing Interests

The authors declare that they have no conflict of interest regarding the publication of this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, CJ., Ke, CH. Global Classical Solutions to a Predator-Prey Model with Nonlinear Indirect Chemotaxis Mechanism. Acta Appl Math 190, 11 (2024). https://doi.org/10.1007/s10440-024-00648-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10440-024-00648-z

Keywords

Mathematics Subject Classification

Navigation