Skip to main content
Log in

Normalized Ground States for the Mass-Energy Doubly Critical Kirchhoff Equations

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

In this paper, we study the normalized solutions for the nonlinear critical Kirchhoff equations with combined nonlinearities in \(\mathbb{R}^{4}\). In particular, in the case of \(N=4\), there is a new mass-energy doubly critical phenomenon for Kirchhoff equation with combined nonlinearities that the mass critical exponent \(2+\frac{8}{N}\) is equal to the energy critical exponent \(\frac{2N}{N-2}\), which remains unsolved in the existing literature. To deal with the special difficulties created by the nonlocal term and doubly critical term, we develop a perturbed Pohožaev constraint method based on the splitting properties of the Brézis-Lieb lemma, and make some subtle energy estimates. By decomposing Pohožaev manifold and constructing fiber map, we prove the existence of a positive normalized ground state. Moreover, we also explore the asymptotic behavior of the obtained normalized solutions. These conclusions extend some known ones in previous papers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alves, C.O., Ji, C., Miyagaki, O.H.: Normalized solutions for a Schrödinger equation with critical growth in \(\mathbb{R}^{N}\). Calc. Var. Partial Differ. Equ. 61, 18 (2022). https://doi.org/10.1007/s00526-021-02123-1

    Article  MATH  Google Scholar 

  2. Bartsch, T., Soave, N.: Multiple normalized solutions for a competing system of Schrödinger equations. Calc. Var. Partial Differ. Equ. 58, 22 (2019). https://doi.org/10.1007/s00526-018-1476-x

    Article  MATH  Google Scholar 

  3. Bartsch, T., Jeanjean, L., Soave, N.: Normalized solutions for a system of coupled cubic Schrödinger equations on \(\mathbb{R}^{3}\). J. Math. Pures Appl. 106, 583–614 (2016). https://doi.org/10.1016/j.matpur.2016.03.004

    Article  MathSciNet  MATH  Google Scholar 

  4. Brézis, H., Lieb, E.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 88, 486–490 (1983). https://doi.org/10.1007/978-3-642-55925-9_42

    Article  MathSciNet  MATH  Google Scholar 

  5. Cazenave, T., Lions, P.-L.: Orbital stability of standing waves for some nonlinear Schrödinger equations. Commun. Math. Phys. 85, 549–561 (1982). https://doi.org/10.1007/bf01403504

    Article  MATH  Google Scholar 

  6. Chipot, M., Lovat, B.: Some remarks on nonlocal elliptic and parabolic problems. Nonlinear Anal. 30, 4619–4627 (1997). https://doi.org/10.1016/S0362-546X(97)00169-7

    Article  MathSciNet  MATH  Google Scholar 

  7. Deng, Y.B., Peng, S.J., Shuai, W.: Existence and asympototic behavior of nodal solutions for the Kirchhoff-type problems in \(\mathbb{R}^{3}\). J. Funct. Anal. 269, 3500–3527 (2015). https://doi.org/10.1016/j.jfa.2015.09.012

    Article  MathSciNet  MATH  Google Scholar 

  8. Gou, T.X., Jeanjean, L.: Existence and orbital stability of standing waves for nonlinear Schrödinger systems. Nonlinear Anal. 144, 10–22 (2016). https://doi.org/10.1016/j.na.2016.05.016

    Article  MathSciNet  MATH  Google Scholar 

  9. Gou, T.X., Jeanjean, L.: Multiple positive normalized solutions for nonlinear Schrödinger systems. Nonlinearity 31, 2319–2345 (2018). https://doi.org/10.1088/1361-6544/aab0bf

    Article  MathSciNet  MATH  Google Scholar 

  10. Guo, Y.J., Seiringer, R.: On the mass concentration for Bose-Einstein condensates with attractive interactions. Lett. Math. Phys. 104, 141–156 (2014). https://doi.org/10.1007/s11005-013-0667-9

    Article  MathSciNet  MATH  Google Scholar 

  11. Guo, Y.J., Zeng, X.Y., Zhou, H.S.: Energy estimates and symmetry breaking in attractive Bose-Einstein condensates with ring-shaped potentials. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 33, 809–828 (2016). https://doi.org/10.1016/J.ANIHPC.2015.01.005

    Article  MathSciNet  MATH  Google Scholar 

  12. Guo, Y.J., Wang, Z.Q., Zeng, X.Y., Zhou, H.S.: Properties of ground states of attractive Gross-Pitaevskii equations with multi-well potentials. Nonlinearity 31, 957–979 (2018). https://doi.org/10.1088/1361-6544/aa99a8

    Article  MathSciNet  MATH  Google Scholar 

  13. Guo, H.L., Zhang, Y.M., Zhou, H.S.: Blow-up solutions for a Kirchhoff type elliptic equation with trapping potential. Commun. Pure Appl. Anal. 17, 1875–1897 (2018). https://doi.org/10.3934/cpaa.2018089

    Article  MathSciNet  MATH  Google Scholar 

  14. He, X.M., Zou, W.M.: Existence and concentration behavior of positive solutions for a Kirchhoff equation in \(\mathbb{R}^{3}\). J. Differ. Equ. 252, 1813–1834 (2012). https://doi.org/10.1016/j.jde.2011.08.035

    Article  MATH  Google Scholar 

  15. Hu, T.X., Tang, C.L.: Limiting behavior and local uniqueness of normalized solutions for mass critical Kirchhoff equations. Calc. Var. Partial Differ. Equ. 60, 210 (2021). https://doi.org/10.1007/s00526-021-02018-1

    Article  MathSciNet  MATH  Google Scholar 

  16. Jeanjean, L.: Existence of solutions with prescribed norm for semilinear elliptic equations. Nonlinear Anal. 28, 1633–1659 (1997). https://doi.org/10.1016/S0362-546X(96)00021-1

    Article  MathSciNet  MATH  Google Scholar 

  17. Jeanjean, L., Le, T.: Multiple normalized solutions for a Sobolev critical Schrödinger equation. Math. Ann. 384, 101–134 (2022). https://doi.org/10.1007/s00208-021-02228-0

    Article  MathSciNet  MATH  Google Scholar 

  18. Jeanjean, L., Jendrej, J., Le, T., Visciglia, N.: Orbital stability of ground states for a Sobolev critical Schrödinger equation. J. Math. Pures Appl. 164, 158–179 (2022). https://doi.org/10.1016/j.matpur.2022.06.005

    Article  MathSciNet  MATH  Google Scholar 

  19. Jeanjean, L., Zhang, J.J., Zhong, X.X.: A global branch approach to normalized solutions the Schrödinger equation. arXiv:2112.05869. Preprint

  20. Kirchhoff, G.: Mechanik. Teubner, Leipzig (1883)

    MATH  Google Scholar 

  21. Kong, L., Chen, H.: Normalized solutions for nonlinear fractional Kirchhoff type systems. Topol. Methods Nonlinear Anal. 60, 153–183 (2022). https://doi.org/10.12775/TMNA.2021.067

    Article  MathSciNet  MATH  Google Scholar 

  22. Kong, L., Chen, H.: Normalized solutions for nonlinear Kirchhoff type equations in high dimensions. Electron. Res. Arch. 30, 1282–1295 (2022). https://doi.org/10.3934/era.2022067

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, G.B., Ye, H.Y.: Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in \(\mathbb{R}^{3}\). J. Differ. Equ. 257, 566–600 (2014). https://doi.org/10.1016/j.jde.2014.04.011

    Article  MATH  Google Scholar 

  24. Li, G.B., Ye, H.Y.: On the concentration phenomenon of \(L^{2}\)-subcritical constrained minimizers for a class of Kirchhoff equations with potentials. J. Differ. Equ. 266, 7101–7123 (2019). https://doi.org/10.1016/j.jde.2018.11.024

    Article  MATH  Google Scholar 

  25. Li, Y.H., Li, F.Y., Shi, J.P.: Existence of a positive solution to Kirchhoff type problems without compactness conditions. J. Differ. Equ. 253, 2285–2294 (2012). https://doi.org/10.1016/j.jde.2012.05.017

    Article  MathSciNet  MATH  Google Scholar 

  26. Li, Y.H., Hao, X.C., Shi, J.P.: The existence of constrained minimizers for a class of nonlinear Kirchhoff-Schrödinger equations with doubly critical exponents in dimension four. Nonlinear Anal. 186, 99–112 (2019). https://doi.org/10.1016/j.na.2018.12.010

    Article  MathSciNet  MATH  Google Scholar 

  27. Li, G.B., Luo, X., Yang, T.: Normalized solutions to a class of Kirchhoff equations with Sobolev critical exponent. Ann. Fenn. Math. 47, 895–925 (2022). https://doi.org/10.54330/afm.120247

    Article  MathSciNet  MATH  Google Scholar 

  28. Lieb, E., Loss, M.: Analysis, 2nd edn. Graduate Studies in Mathematics, vol. 14. Am. Math. Soc., Providence (2001). https://doi.org/10.1090/gsm/014

    Book  MATH  Google Scholar 

  29. Lions, J.-L.: On some questions in boundary value problems of mathematical physics. North-Holl. Math. Stud. 30, 284–346 (1978). https://doi.org/10.1016/S0304-0208(08)70870-3

    Article  MathSciNet  Google Scholar 

  30. Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The locally compact case. I. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 1, 109–145 (1984). https://doi.org/10.1016/S0294-1449(16)30428-0

    Article  MathSciNet  MATH  Google Scholar 

  31. Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The locally compact case. II. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 1, 223–283 (1984). https://doi.org/10.1016/S0294-1449(16)30422-X

    Article  MathSciNet  MATH  Google Scholar 

  32. Liu, Z.S., Guo, S.J.: Existence of positive ground state solutions for Kirchhoff type problems. Nonlinear Anal. 120, 1–13 (2015). https://doi.org/10.1016/j.na.2014.12.008

    Article  MathSciNet  MATH  Google Scholar 

  33. Liu, Z.S., Guo, S.J.: On ground states for the Kirchhoff-type problem with a general critical nonlinearity. J. Math. Anal. Appl. 426, 267–287 (2015). https://doi.org/10.1016/j.jmaa.2015.01.044

    Article  MathSciNet  MATH  Google Scholar 

  34. Perera, K., Zhang, Z.T.: Nontrivial solutions of Kirchhoff-type problems via the Yang index. J. Differ. Equ. 221, 246–255 (2006). https://doi.org/10.1016/j.jde.2005.03.006

    Article  MathSciNet  MATH  Google Scholar 

  35. Shibata, M.: Stable standing waves of nonlinear Schrödinger equations with a general nonlinear term. Manuscr. Math. 143, 221–237 (2014). https://doi.org/10.1007/s00229-013-0627-9

    Article  MATH  Google Scholar 

  36. Soave, N.: Normalized ground states for the NLS equation with combined nonlinearities. J. Differ. Equ. 269, 6941–6987 (2020). https://doi.org/10.1016/j.jde.2020.05.016

    Article  MathSciNet  MATH  Google Scholar 

  37. Soave, N.: Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case. J. Funct. Anal. 279, 108610 (2020). https://doi.org/10.1016/j.jfa.2020.108610

    Article  MathSciNet  MATH  Google Scholar 

  38. Struwe, M.: Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, forth edn. Results in Mathematics and Related Areas, vol. 34. Springer, Berlin (2008). https://doi.org/10.1007/978-3-540-74013-1

    Book  MATH  Google Scholar 

  39. Sun, J.T., Wu, T.F.: Ground state solutions for an indefinite Kirchhoff type problem with steep potential well. J. Differ. Equ. 256, 1771–1792 (2014). https://doi.org/10.1016/j.jde.2013.12.006

    Article  MathSciNet  MATH  Google Scholar 

  40. Sun, J.T., Cheng, Y., Wu, T.F., Feng, Z.S.: Positive solutions of a superlinear Kirchhoff type equation in \(\mathbb{R}^{N}(N\geq 4)\). Commun. Nonlinear Sci. Numer. Simul. 71, 141–160 (2019). https://doi.org/10.1016/j.cnsns.2018.11.002

    Article  MathSciNet  MATH  Google Scholar 

  41. Wei, J.C., Wu, Y.Z.: Normalized solutions for Schrödinger equations with critical Sobolev exponent and mixed nonlinearities. J. Funct. Anal. 283, 109574 (2022). https://doi.org/10.1016/j.jfa.2022.109574

    Article  MATH  Google Scholar 

  42. Weinstein, M.: Nonlinear Schrödinger equations and sharp interpolation estimates. Commun. Math. Phys. 87, 567–576 (1983). https://doi.org/10.1007/BF01208265

    Article  MATH  Google Scholar 

  43. Xie, W., Chen, H.: Existence and multiplicity of normalized solutions for the nonlinear Kirchhoff type problems. Comput. Math. Appl. 76, 579–591 (2018). https://doi.org/10.1016/j.camwa.2018.04.038

    Article  MathSciNet  MATH  Google Scholar 

  44. Ye, H.Y.: The existence of normalized solutions for \(L^{2}\)-critical constrained problems related to Kirchhoff equations. Z. Angew. Math. Phys. 66, 1483–1497 (2015). https://doi.org/10.1007/s00033-014-0474-x

    Article  MathSciNet  MATH  Google Scholar 

  45. Ye, H.Y.: The sharp existence of constrainedminimizers for a class of nonlinear Kirchhoff equations. Math. Methods Appl. Sci. 38, 2663–2679 (2015). https://doi.org/10.1002/mma.3247

    Article  MathSciNet  MATH  Google Scholar 

  46. Ye, H.Y.: The mass concentration phenomenon for \(L^{2}\)-critical constrained problems related to Kirchhoff equations. Z. Angew. Math. Phys. 67, 29 (2016). https://doi.org/10.1007/s00033-016-0624-4

    Article  MATH  Google Scholar 

  47. Zeng, X.Y., Zhang, Y.M.: Existence and uniqueness of normalized solutions for the Kirchhoff equation. Appl. Math. Lett. 74, 52–59 (2017). https://doi.org/10.1016/j.aml.2017.05.012

    Article  MathSciNet  MATH  Google Scholar 

  48. Zeng, X.Y., Zhang, J.J., Zhang, Y.M., Zhong, X.X.: Positive normalized solution to the Kirchhoff equation with general nonlinearities. arXiv:2112.10293. Preprint

  49. Zhang, P.H., Han, Z.Q.: Normalized ground states for Kirchhoff equations in \(\mathbb{R}^{3}\) with a critical nonlinearity. J. Math. Phys. 63, 021505 (2022). https://doi.org/10.1063/5.0067520

    Article  MATH  Google Scholar 

Download references

Funding

This work is supported by National Natural Science Foundation of China (No. 12071486).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haibo Chen.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, L., Chen, H. Normalized Ground States for the Mass-Energy Doubly Critical Kirchhoff Equations. Acta Appl Math 186, 5 (2023). https://doi.org/10.1007/s10440-023-00584-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10440-023-00584-4

Keywords

Mathematics Subject Classification (2010)

Navigation