Skip to main content
Log in

Decay Rates for Mild Solutions of the Quasi-Geostrophic Equation with Critical Fractional Dissipation in Sobolev-Gevrey Spaces

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

We study the existence of mild solutions for the Quasi-geostrophic equation with critical fractional dissipation in Sobolev-Gevrey spaces. In order to be more specific, by assuming that the initial data \(\theta _{0}\in \dot{H}_{a,\sigma }^{s}(\mathbb{R}^{2})\) (with \(a>0\), \(\sigma > 1\), \(s\in [0,1)\)) is small enough, we prove that there is a unique global in time (mild) solution

$$ \theta \in \widetilde{L^{\infty }}(\mathbb{R}^{+};\dot{H}_{a,\sigma }^{s}( \mathbb{R}^{2}))\cap L^{2}(\mathbb{R}^{+};\dot{H}^{s+\frac{1}{2}}_{a, \sigma }(\mathbb{R}^{2})) $$

for this equation. Furthermore, as a consequence, we establish some decay rates for this same solution as time goes to infinity; more precisely, this work also determines the following superior limit:

$$ \displaystyle \limsup _{t\rightarrow \infty } t^{\kappa }\|\theta (t) \|_{\dot{H}_{a,\sigma }^{\kappa }(\mathbb{R}^{2})}=0, $$

for all \(\kappa \geq 0\) if \(s=0\), and for all \(\kappa >0\) whether \(s\in (0,1)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Code Availability

Not applicable.

Notes

  1. Consider that \(H\) is endowed with the norm \(\|\cdot \|_{H}:=[\|\cdot \|_{\widetilde{L^{\infty}}(\mathbb{R}^{+}; \dot{H}_{a,\sigma}^{s}(\mathbb{R}^{2}))}^{2}+\|\cdot \|_{L^{2}( \mathbb{R}^{+};\dot{H}_{a,\sigma}^{s +\frac{1}{2}}(\mathbb{R}^{2}))}^{2}]^{ \frac{1}{2}}\).

  2. Here \(H\times H\) is equipped with the norm \(\|(\cdot ,\star )\|_{H\times H}:=[\|\cdot \|_{H}^{2}+\|\star \|_{H}^{2}]^{ \frac{1}{2}}\).

References

  1. Bae, H.: Existence and analyticity of Lei-Lin solution to the Navier-Stokes equations. Proc. Am. Math. Soc. 143, 2887–2892 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Benameur, J., Abdallah, S.B.: Asymptotic behavior of critical dissipative quasi-geostrophic equation in Fourier space. J. Math. Anal. Appl. 497, 124873 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  3. Benameur, J., Bennaceur, M.: Large time behaviour of solutions to the 3D-NSE in \(\mathcal{X}^{\sigma}\) spaces. J. Math. Anal. Appl. 482, 123566 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bjorland, C., Schonbek, M.E.: Poincaré’s inequality and diffusive evolution equations. Adv. Differ. Equ. 14, 241–260 (2009)

    MATH  Google Scholar 

  5. Brandolese, L.: Characterization of solutions to dissipative systems with sharp algebraic decay. SIAM J. Math. Anal. 48, 1616–1633 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cannone, M., Wu, G.: Global well-posedness for Navier-Stokes equations in critical Fourier-Herz spaces. Nonlinear Anal. 75, 3754–3760 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Constantin, P., Majda, A., Tabak, E.: Formation of strong fronts in the 2-D quasi-geostrophic thermal active scalar. Nonlinearity 7, 1495–1533 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  8. Constantin, P., Cordoba, D., Wu, J.: On the critical dissipative quasi-geostrophic equation. Indiana Univ. Math. J. 50, 97–107 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Guterres, R., Melo, W.G., Nunes, J., Preusato, C.: Large time decay for the magnetohydrodynamics equations in Sobolev-Gevrey spaces. Monatshefte Math. 192, 591–613 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  10. Guterres, R.H., Melo, W.G., Rocha, N.F., Santos, T.S.R.: Well-posedness, blow-up criteria and stability for solutions of the generalized MHD equations in Sobolev-Gevrey spaces. Acta Appl. Math. 176, 4 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  11. Guterres, R.H., Niche, C.J., Perusato, C.F., Zingano, P.R.: Upper and lower \(\dot{H}^{m}\) estimates for solutions to parabolic equations. J. Differ. Equ. 356, 407–431 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  12. Held, I., Pierrehumbert, R., Garner, S., Swanson, K.: Surface quasi-geostrophic dynamics. J. Fluid Mech. 282, 1–20 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. Herz, C.S.: Lipschitz spaces and Bernstein’s theorem on absolutely convergent Fourier transforms. J. Math. Mech. 18, 283–323 (1968/69)

    MathSciNet  MATH  Google Scholar 

  14. Lorenz, J., Melo, W.G., Rocha, N.F.: The magneto-hydrodynamic equations: local theory and blow-up of solutions. Discrete Contin. Dyn. Syst., Ser. B 24, 3819–3841 (2019)

    MathSciNet  MATH  Google Scholar 

  15. Melo, W.G., Santos, T.S.R.: Time decay rates for the generalized MHD-\(\alpha \) equations in Sobolev-Gevrey spaces. Appl. Anal. 101, 6623–6644 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  16. Melo, W.G., Rocha, N.F., Zingano, P.R.: Local existence, uniqueness and lower bounds of solutions for the magnetohydrodynamics equations in Sobolev-Gevrey spaces. J. Math. Anal. Appl. 482, 123524 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  17. Melo, W.G., Rocha, N.F., Barbosa, E.: Navier-Stokes equations: local existence, uniqueness and blow-up of solutions in Sobolev-Gevrey spaces. Appl. Anal. 100, 1905–1924 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  18. Melo, W.G., Rocha, N.F., Zingano, P.R.: Asymptotic behavior of solutions for the 2D micropolar equations in Sobolev-Gevrey spaces. Asymptot. Anal. 123, 157–179 (2021)

    MathSciNet  MATH  Google Scholar 

  19. Melo, W.G., de Souza, M., Santos, T.S.R.: On the generalized magnetohydrodynamics-\(\alpha \) equations with fractional dissipation in Lei–Lin and Lei–Lin–Gevrey spaces. Z. Angew. Math. Phys. 73, 44 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  20. Niche, C.J., Schonbek, M.E.: Decay of weak solutions to the 2D dissipative quasi-geostrophic equation. Commun. Math. Phys. 276, 93–115 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Niche, C.J., Schonbek, M.E.: Decay characterization of solutions to dissipative equations. J. Lond. Math. Soc. 91, 573–595 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Orf, H.: Long time decay for global solutions to the Navier-Stokes equations in Sobolev-Gevery spaces, 2019. arXiv:1903.03034

  23. Pedlosky, J.: Geophysical Fluid Dynamics. Springer, New York (1987). https://doi.org/10.1007/978-1-4612-4650-3

    Book  MATH  Google Scholar 

Download references

Funding

Wilberclay G. Melo is partially supported by CNPq grant 309880/2021-1, and Natielle dos Santos Costa is partially supported by CAPES Grant 8888.7620886/2021-00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilberclay G. Melo.

Ethics declarations

Competing Interests

All authors have declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melo, W.G., Rocha, N.F. & dos Santos Costa, N. Decay Rates for Mild Solutions of the Quasi-Geostrophic Equation with Critical Fractional Dissipation in Sobolev-Gevrey Spaces. Acta Appl Math 186, 4 (2023). https://doi.org/10.1007/s10440-023-00582-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10440-023-00582-6

Keywords

Mathematics Subject Classification

Navigation