Skip to main content
Log in

On the Persistence of Lower-Dimensional Tori in Reversible Systems with Hyperbolic-Type Degenerate Equilibrium Point Under Small Perturbations

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

This paper focuses on the persistence of lower-dimensional tori in reversible systems with hyperbolic-type degenerate equilibrium point under small perturbations. Moreover, the dimension of degenerate variable is greater than or equal to 2. By KAM iteration and the Topological degree theorem, we prove that the invariant torus with given frequency persists under small perturbations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, V.I.: Reversible systems. In: Nonlinear and Turbulent Processes in Physics, Kiev, 1983, vol. 3, pp. 1161–1174. Harwood Academic, Chur (1984)

    Google Scholar 

  2. Broer, H.W., Huitema, G.B., Sevryuk, M.B.: Quasi-Periodic Motions in Families of Dynamical Systems, Order Amidst Chaos. Lecture Notes in Math., vol. 1645. Springer, Berlin (1996)

    MATH  Google Scholar 

  3. Broer, H.W., Huitema, G.B.: Unfoldings of quasi-periodic tori in reversible systems. J. Dyn. Differ. Equ. 7, 191–212 (1995)

    Article  MathSciNet  Google Scholar 

  4. Broer, H.W., Hoo, J., Naudot, V.: Normal linear stability of quasi-periodic tori. J. Differ. Equ. 232, 355–418 (2007)

    Article  MathSciNet  Google Scholar 

  5. Broer, H.W., Ciocci, M.C., Hanßmann, H., Vanderbauwhede, A.: Quasi-periodic stability of normally resonant tori. Physica D 238, 309–318 (2009)

    Article  MathSciNet  Google Scholar 

  6. Broer, H.W., Ciocci, M.C., Hanßmann, H.: Oscillatory motions for the restricted planar circular three body problem. Invent. Math. 203, 417–492 (2016)

    Article  MathSciNet  Google Scholar 

  7. Hu, S., Liu, B.: Degenerate lower dimensional invariant tori in reversible systems. Discrete Contin. Dyn. Syst. 38, 3735–3763 (2018)

    Article  MathSciNet  Google Scholar 

  8. Lamb, J.S.W., Roberts, J.A.G.: Time-reversal symmetry in dynamical systems: a survey. Physics D 112, 1–39 (1998)

    Article  MathSciNet  Google Scholar 

  9. Liu, B.: On lower dimensional invariant tori in reversible systems. J. Differ. Equ. 176, 158–194 (2001)

    Article  MathSciNet  Google Scholar 

  10. Moser, J.: Convergent series expansions for quasi-periodic motions. Math. Ann. 169, 136–176 (1967)

    Article  MathSciNet  Google Scholar 

  11. Moser, J.: Stable and Random Motions in Dynamical Systems, with Special Emphasis on Celestial Mechanics. Annals Mathematics Studies, vol. 77. Princeton University Press, Princeton (1973)

    MATH  Google Scholar 

  12. Martínez, R., Simó, C.: Invariant manifolds at infinity of the RTBP and the boundaries of bounded motion. Regul. Chaotic Dyn. 19, 745–765 (2014)

    Article  MathSciNet  Google Scholar 

  13. Parasyuk, I.O.: Conservation of quasiperiodic motions in reversible multifrequency systems. Dokl. Akad. Nauk Ukr. SSR, Ser. A. 9, 19–22 (1982)

    MATH  Google Scholar 

  14. Pöschel, J.: On elliptic lower-dimensional tori in Hamiltonian systems. Math. Z. 202, 559–608 (1989)

    Article  MathSciNet  Google Scholar 

  15. Pöschel, J.: A lecture on the classical KAM theorem. In: Katok, A., de la Llave, R., Pesin, Ya., Weiss, H. (eds.) Smooth Ergodic Theory and Its Applications, AMS Summer Research Institute, Seattle, 1999. Proc. Symposia in Pure Mathematics, vol. 69, pp. 707–732. Am. Math. Soc., Providence (2001)

    Chapter  Google Scholar 

  16. Sevryuk, M.B.: Reversible Systems. Lecture Notes in Math., vol. 1211. Springer, Berlin (1986)

    Book  Google Scholar 

  17. Sevryuk, M.B.: Invariant m-dimensional tori of reversible systems with phase space of dimension greater than 2 m. J. Sov. Math. 51, 2374–2386 (1990)

    Article  MathSciNet  Google Scholar 

  18. Sevryuk, M.B.: New results in the reversible KAM theory. In: Kuksin, S.B., Lazutkin, V.F., Pöschel, J. (eds.) Seminar on Dynamical Systems, pp. 184–199. Birkhäuser, Basel (1994)

    Chapter  Google Scholar 

  19. Sevryuk, M.B.: The iteration-approximation decoupling in the reversible KAM theory. Chaos 5, 552–565 (1995)

    Article  MathSciNet  Google Scholar 

  20. Sevryuk, M.B.: Partial preservation of frequency in KAM theory. Nonlinearity 19, 1099–1140 (2006)

    Article  MathSciNet  Google Scholar 

  21. Tkhai, V.N.: Reversibility of mechanical systems. J. Appl. Math. Mech. 55, 461–468 (1991)

    Article  MathSciNet  Google Scholar 

  22. Wang, X., Xu, J.: Gevrey-smoothness of invariant tori for analytic reversible systems under Rüssmann’s non-degeneracy condition. Discrete Contin. Dyn. Syst. 25, 701–718 (2009)

    Article  MathSciNet  Google Scholar 

  23. Wang, X., Xu, J., Zhang, D.: Persistence of lower dimensional elliptic invariant tori for a class of nearly integrable reversible systems. Discrete Contin. Dyn. Syst., Ser. B 14, 1237–1249 (2010)

    MathSciNet  MATH  Google Scholar 

  24. Wang, X., Zhang, D., Xu, J.: Persistence of lower dimensional tori for a class of nearly integrable reversible systems. Acta Appl. Math. 115, 193–207 (2011)

    Article  MathSciNet  Google Scholar 

  25. Xu, X.W.J., Zhang, D.: Degenerate lower dimensional tori in reversible systems. J. Math. Anal. Appl. 387, 776–790 (2012)

    Article  MathSciNet  Google Scholar 

  26. Wang, X., Xu, J., Zhang, D.: On the persistence of degenerate lower-dimensional tori in reversible systems. Ergod. Theory Dyn. Syst. 35, 2311–2333 (2015)

    Article  MathSciNet  Google Scholar 

  27. Wang, X., Zhang, D., Xu, J.: A new KAM theorem for the hyperbolic lower dimensional tori in reversible systems. Acta Appl. Math. 143, 45–61 (2016)

    Article  MathSciNet  Google Scholar 

  28. Wang, X., Zhang, D., Xu, J.: On the persistence of lower-dimensional elliptic tori with prescribed frequencies in reversible systems. Discrete Contin. Dyn. Syst. 36, 1677–1692 (2016)

    Article  MathSciNet  Google Scholar 

  29. Wang, X., Zhang, D., Xu, J.: A KAM theorem for the elliptic lower dimensional tori with one normal frequency in reversible systems. Discrete Contin. Dyn. Syst. 37, 2141–2160 (2017)

    Article  MathSciNet  Google Scholar 

  30. Wang, X., Zhang, D., Xu, J.: Non-Floquet invariant tori in reversible systems. Discrete Contin. Dyn. Syst. 38, 3439–3457 (2018)

    Article  MathSciNet  Google Scholar 

  31. Whitney, H.: Analytic extensions of differentiable functions defined in closed sets. Trans. Am. Math. Soc. 36, 63–89 (1934)

    Article  MathSciNet  Google Scholar 

  32. Wei, B.: Perturbations of lower dimensional tori in the resonant zone for reversible systems. J. Math. Anal. Appl. 253, 558–577 (2001)

    Article  MathSciNet  Google Scholar 

  33. Xu, J.: Normal form of reversible systems and persistence of lower dimensional tori under weaker nonresonance conditions. SIAM J. Math. Anal. 36, 233–255 (2004)

    Article  MathSciNet  Google Scholar 

  34. Xu, J.: On small perturbation of two-dimensional quasi-periodic systems with hyperbolic-type degenerate equilibrium point. J. Differ. Equ. 250, 551–571 (2011)

    Article  MathSciNet  Google Scholar 

  35. Xu, J.: On quasi-periodic perturbations of hyperbolic-type degenerate equilibrium point of a class of planar systems. Discrete Contin. Dyn. Syst. 33, 2593–2619 (2013)

    Article  MathSciNet  Google Scholar 

  36. You, J.: A KAM theorem for hyperbolic-type degenerate lower dimensional tori in Hamiltonian systems. Commun. Math. Phys. 192, 145–168 (1998)

    Article  MathSciNet  Google Scholar 

  37. Zhang, D., Xu, J., Wang, X.: A new KAM iteration with nearly infinitely small steps in reversible systems of polynomial character. Qual. Theory Dyn. Syst. 17, 271–289 (2018)

    Article  MathSciNet  Google Scholar 

  38. Zhang, D., Xu, J.: Reducibility of three dimensional skew symmetric system with Liouvillean basic frequencies. Discrete Contin. Dyn. 38, 2851–2877 (2018)

    Article  MathSciNet  Google Scholar 

  39. Zhang, D., Xu, X.: On the linearization of vector fields on a torus with prescribed frequency. Topol. Methods Nonlinear Anal. 54, 649–663 (2019)

    MathSciNet  MATH  Google Scholar 

  40. Zhang, D., Xu, J.: Reducibility of a class of nonlinearquasi-periodic systems with Liouvillean basic frequencies. Ergod. Theory Dyn. Syst. 41, 1–38 (2020). https://doi.org/10.1017/etds.2020.23.

    Article  Google Scholar 

  41. Zhang, D., Xu, J., Wu, H., Xu, X.: On the reducibility of linear quasi-periodic systems with Liouvillean basic frequencies and multiple eigenvalues. J. Differ. Equ. 269, 10670–10716 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank the referees for their many helpful suggestions for this revised version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaocai Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by National Natural Science Foundation of China (11501234, 11871146, 117030006)

Appendix

Appendix

In this section we formulate a lemma which have been used in the previous section.

Let \(\mathcal{U}_{s}\) denote the space of all real analytic functions \(f(x)\) defined in the complex domain \(D(s)= \{ x |\ |\text{Im } x|\leq s \}\); that is

$$ \mathcal{U}_{s}=\Big\{ f(x)\ \big| \ f(x )=\sum _{k\in \mathbb{Z}^{n} }f_{k} e^{\sqrt{-1}\langle k,x\rangle }, \|f\|_{s}< \infty \Big\} . $$

Let

$$ \mathcal{U}_{s}^{0}=\Big\{ f(x)\ \big| \ f(x ) \in \mathcal{K}_{s}, \ [f]=0 \Big\} . $$

Lemma 2

Suppose that \(\omega \) satisfies the Diophantine condition \(|\langle k, \omega \rangle |\geq \frac{\alpha }{|k|^{\tau }} , \ \forall k\in \mathbb{Z}^{n} \backslash \{0\} \). Then the equation

$$ \partial _{\omega } h(x) =g(x), \ g(x)\in \mathcal{U}_{s}^{0}, $$

has a unique solution \(h(x)\in \bigcup _{0<\rho <s}\mathcal{U}_{s-\rho }^{0}\) with

$$ \|h\|_{s-\rho }\leq \frac{c}{\alpha \rho ^{\tau }} \|g\|_{s },\ 0< \rho < s, $$

where the constant \(c\) depends only on \(n\) and \(\tau \).

For this lemma, we refer to Lemma 1 in [14].

Lemma 3

Let

$$ A=(a_{ij})_{p\times p}, \ B=(b_{ij})_{p\times p}, C=(c_{ij})_{p \times p}, X=(x_{ij})_{p\times p}. $$

Then the matrix equation \(AX + XB = C\) is equivalent to the following linear equation \(D\{X\} = \{C\}\), where

$$\begin{aligned} &\{X\}=( x_{11},x_{12},\ldots ,x_{1p},x_{21},x_{22},\ldots ,x_{2p}, \ldots ,x_{p1},x_{p2},\ldots ,x_{pp})^{T}, \\ &\{C\}=( c_{11},c_{12},\ldots ,c_{1p},c_{21},x_{22},\ldots ,x_{2p}, \ldots ,c_{p1},x_{p2},\ldots ,c_{pp})^{T} \end{aligned}$$

are \(p^{2}\)-columns and the coefficient matrix

$$ D =\displaystyle \left ( \textstyle\begin{array}{c@{\quad }c@{\quad }c@{\quad }c} a_{11}I_{p}+B^{T}& a_{12}I_{p} & \cdots & a_{1p}I_{p} \\ a_{21}I_{p}& a_{22}I_{p}+B^{T} & \cdots & a_{2p}I_{p} \\ \vdots & \vdots & \cdots & \vdots \\ a_{p1}I_{p}& a_{p2} & \cdots & a_{pp}I_{p}+B^{T} \\ \end{array}\displaystyle \right ) $$

with the eigenvalues

$$ \Big\{ \lambda _{i}^{a}+\lambda _{j}^{b}\big| i,j =1,2,\ldots ,p \Big\} , $$

if \(A\) has the eigenvalues \(\lambda _{1}^{a},\lambda _{2}^{a},\ldots ,\lambda _{p}^{a}\) and \(B\) has the eigenvalues \(\lambda _{1}^{b},\lambda _{2}^{b},\ldots ,\lambda _{p}^{b}\).

By direct verification, the conclusion of this lemma is obvious, and we will omit the proof of Lemma 3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Cao, X. On the Persistence of Lower-Dimensional Tori in Reversible Systems with Hyperbolic-Type Degenerate Equilibrium Point Under Small Perturbations. Acta Appl Math 173, 10 (2021). https://doi.org/10.1007/s10440-021-00419-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10440-021-00419-0

Keywords

Mathematics Subject Classification (2010)

Navigation