Skip to main content
Log in

Stable Phaseless Sampling and Reconstruction of Real-Valued Signals with Finite Rate of Innovation

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

A spatial signal is defined by its evaluations on the whole domain. In this paper, we consider stable reconstruction of real-valued signals with finite rate of innovation (FRI), up to a sign, from their magnitude measurements on the whole domain or their phaseless samples on a discrete subset. FRI signals appear in many engineering applications such as magnetic resonance spectrum, ultra wide-band communication and electrocardiogram. For an FRI signal, we introduce an undirected graph to describe its topological structure, establish the equivalence between its graph connectivity and its phase retrievability by point evaluation measurements on the whole domain, apply the graph connected component decomposition to find its unique landscape decomposition and the set of FRI signals that have the same magnitude measurements. We construct discrete sets with finite density so that magnitude measurements of an FRI signal on the whole domain are determined by its phaseless samples taken on those discrete subsets, and we show that the corresponding phaseless sampling procedure has bi-Lipschitz property with respect to a new induced metric on the signal space and the standard \(\ell ^{p}\)-metric on the sampling data set. In this paper, we also propose an algorithm with linear complexity to reconstruct an FRI signal from its (un)corrupted phaseless samples on the above sampling set without restriction on the noise level and apriori information whether the original FRI signal is phase retrievable. The algorithm is theoretically guaranteed to be stable, and numerically demonstrated to approximate the original FRI signal in magnitude measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Alaifari, R., Grohs, P.: Phase retrieval in the general setting of continuous frames for Banach spaces. SIAM J. Math. Anal. 49, 1895–1911 (2017)

    MathSciNet  MATH  Google Scholar 

  2. Alaifari, R., Daubechies, I., Grohs, P., Yin, R.: Stable phase retrieval in infinite dimensions. Found. Comput. Math. 19, 869–900 (2019)

    MathSciNet  MATH  Google Scholar 

  3. Aldroubi, A., Gröchenig, K.: Nonuniform sampling and reconstruction in shift-invariant spaces. SIAM Rev. 43, 585–620 (2001)

    MathSciNet  MATH  Google Scholar 

  4. Atreas, N.D.: On a class of non-uniform average sampling expansions and partial reconstruction in subspaces of \(L_{2}({\mathbb{R}})\). Adv. Comput. Math. 36, 21–38 (2012)

    MathSciNet  MATH  Google Scholar 

  5. Baechler, G., Krekovic, M., Ranieri, J., Chebira, A., Lu, Y.M., Vetterli, M.: Super resolution phase retrieval for sparse signals. IEEE Trans. Signal Process. 67, 4839–4854 (2019)

    MATH  Google Scholar 

  6. Balan, R., Zou, D.: On Lipschitz analysis and Lipschitz synthesis for the phase retrieval problem. Linear Algebra Appl. 496, 152–181 (2016)

    MathSciNet  MATH  Google Scholar 

  7. Balan, R., Casazza, P.G., Edidin, D.: On signal reconstruction without phase. Appl. Comput. Harmon. Anal. 20, 345–356 (2006)

    MathSciNet  MATH  Google Scholar 

  8. Balan, R., Casazza, P.G., Heil, C., Landau, Z.: Density, overcompleteness and localization of frames I: theory. J. Fourier Anal. Appl. 12, 105–143 (2006)

    MathSciNet  MATH  Google Scholar 

  9. Balan, R., Casazza, P.G., Heil, C., Landau, Z.: Density, overcompleteness and localization of frames II: Gabor system. J. Fourier Anal. Appl. 12, 309–344 (2006)

    MathSciNet  MATH  Google Scholar 

  10. Balan, R., Bodmann, B.G., Casazza, P.G., Edidin, D.: Painless reconstruction from magnitudes of frame coefficients. J. Fourier Anal. Appl. 15, 488–501 (2009)

    MathSciNet  MATH  Google Scholar 

  11. Bandeira, A.S., Cahill, J., Mixon, D.G., Nelson, A.A.: Saving phase: injectivity and stability for phase retrieval. Appl. Comput. Harmon. Anal. 37, 106–125 (2014)

    MathSciNet  MATH  Google Scholar 

  12. Blu, T., Thevenaz, P., Unser, M.: Linear interpolation revitalized. IEEE Trans. Image Process. 13, 710–719 (2004)

    MathSciNet  Google Scholar 

  13. Cahill, J., Casazza, P.G., Daubechies, I.: Phase retrieval in infinite-dimensional Hilbert spaces. Trans. Am. Math. Soc., Ser. B 3, 63–76 (2016)

    MathSciNet  MATH  Google Scholar 

  14. Candes, E.J., Eldar, Y.C., Strohmer, T., Voroninski, V.: Phase retrieval via matrix completion. SIAM J. Imaging Sci. 6, 199–225 (2013)

    MathSciNet  MATH  Google Scholar 

  15. Candes, E., Strohmer, T., Voroninski, V.: Phaselift: exact and stable signal recovery from magnitude measurements via convex programming. Commun. Pure Appl. Math. 66, 1241–1274 (2013)

    MathSciNet  MATH  Google Scholar 

  16. Candes, E.J., Li, X., Soltanolkotabi, M.: Phase retrieval via Wirtinger flow: theory and algorithms. IEEE Trans. Inf. Theory 61, 1985–2007 (2015)

    MathSciNet  MATH  Google Scholar 

  17. Casazza, P.G.: The art of frame theory. Taiwan. J. Math. 4, 129–201 (2000)

    MathSciNet  MATH  Google Scholar 

  18. Casazza, P.G., Ghoreishi, D., Jose, S., Tremain, J.C.: Norm retrieval and phase retrieval by projections. Axioms 6, 6 (2017)

    MATH  Google Scholar 

  19. Chen, Y., Cheng, C., Sun, Q., Wang, H.: Phase retrieval of real-valued signals in a shift-invariant space. Appl. Comput. Harmon. Anal. 49, 56–73 (2020)

    MathSciNet  MATH  Google Scholar 

  20. Cheng, C., Jiang, J., Sun, Q.: Phaseless sampling and reconstruction of real-valued signals in shift-invariant spaces. J. Fourier Anal. Appl. 25, 1361–1394 (2019)

    MathSciNet  MATH  Google Scholar 

  21. Cheng, C., Jiang, Y., Sun, Q.: Spatially distributed sampling and reconstruction. Appl. Comput. Harmon. Anal. 47, 109–148 (2019)

    MathSciNet  MATH  Google Scholar 

  22. Dahmen, W., Micchelli, C.: On the local linear independence of translates of a box spline. Stud. Math. 82, 243–263 (1985)

    MathSciNet  MATH  Google Scholar 

  23. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52, 1289–1306 (2006)

    MathSciNet  MATH  Google Scholar 

  24. Dragotti, P.L., Vetterli, M., Blu, T.: Sampling moments and reconstructing signals of finite rate of innovation: Shannon meets Strang-Fix. IEEE Trans. Signal Process. 55, 1741–1757 (2007)

    MathSciNet  MATH  Google Scholar 

  25. Eldar, Y.C.: Sampling Theory: Beyond Bandlimited Systems. Cambridge University Press, Cambridge (2015)

    MATH  Google Scholar 

  26. Fienup, J.R.: Reconstruction of an object from the modulus of its Fourier transform. Opt. Lett. 3, 27–29 (1978)

    Google Scholar 

  27. Gao, B., Xu, Z.: Phaseless recovery using the Gauss-Newton method. IEEE Trans. Signal Process. 65, 5885–5896 (2017)

    MathSciNet  MATH  Google Scholar 

  28. Gao, B., Sun, Q., Wang, Y., Xu, Z.: Phase retrieval from the magnitudes of affine linear measurements. Adv. Appl. Math. 93, 121–141 (2018)

    MathSciNet  MATH  Google Scholar 

  29. Gerchberg, R.W., Saxton, W.O.: A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik 35, 237–246 (1972)

    Google Scholar 

  30. Goodman, T.N.T., Jia, R.-Q., Zhou, D.-X.: Local linear independence of refinable vectors. Proc. R. Soc. Edinb. A 130, 813–826 (2000)

    MathSciNet  MATH  Google Scholar 

  31. Gröchenig, K.: Foundation of Time-Frequency Analysis. Birkhäuser, Boston (2001)

    MATH  Google Scholar 

  32. Grohs, P., Rathmair, M.: Stable Gabor phase retrieval and spectral clustering. Commun. Pure Appl. Math. 72, 981–1043 (2019)

    MathSciNet  MATH  Google Scholar 

  33. Hamm, K., Ledford, J.: On the structure and interpolation properties of quasi shift-invariant spaces. J. Funct. Anal. 274, 1959–1992 (2018)

    MathSciNet  MATH  Google Scholar 

  34. Han, D., Juste, T., Li, Y., Sun, W.: Frame phase-retrievability and exact phase-retrievable frames. J. Fourier Anal. Appl. 25, 3154–3173 (2019)

    MathSciNet  MATH  Google Scholar 

  35. Hou, H.S., Andrews, H.C.: Cubic splines for image interpolation and digital filtering. IEEE Trans. Acoust. Speech Signal Process. 26, 508–517 (1978)

    MATH  Google Scholar 

  36. Jaganathan, K., Eldar, Y.C., Hassibi, B.: Phase retrieval: an overview of recent developments. In: Stern, A. (ed.) Optical Compressive Imaging, pp. 261–296. CRC Press, Boca Raton (2016)

    Google Scholar 

  37. Janssen, A.J.E.M.: Duality and biorthogonality for Weyl-Heisenberg frames. J. Fourier Anal. Appl. 1, 403–436 (1995)

    MathSciNet  MATH  Google Scholar 

  38. Jia, R.-Q.: Local linear independence of the translates of a box spline. Constr. Approx. 1, 175–182 (1985)

    MathSciNet  MATH  Google Scholar 

  39. Jia, R.-Q., Micchelli, C.A.: On linear independence of integer translates of a finite number of functions. Proc. Edinb. Math. Soc. 36, 69–75 (1992)

    MathSciNet  MATH  Google Scholar 

  40. Leung, V.C.H., Huang, J.-J., Dragotti, P.L.: Reconstruction of FRI signals using deep neural network approaches. In: ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5430–5434. IEEE Press, New York (2020)

    Google Scholar 

  41. Macias, R.A., Segovia, C.: Lipschitz functions on spaces of homogeneous type. Adv. Math. 33, 257–270 (1979)

    MathSciNet  MATH  Google Scholar 

  42. Mallat, S., Waldspurger, I.: Phase retrieval for the Cauchy wavelet transform. J. Fourier Anal. Appl. 21, 1251–1309 (2015)

    MathSciNet  MATH  Google Scholar 

  43. Nashed, M.Z., Sun, Q.: Sampling and reconstruction of signals in a reproducing kernel subspace of \(L^{p}(\mathbb{R}^{d})\). J. Funct. Anal. 258, 2422–2452 (2010)

    MathSciNet  MATH  Google Scholar 

  44. Netrapalli, P., Jain, P., Sanghavi, S.: Phase retrieval using alternating minimization. IEEE Trans. Signal Process. 63, 4814–4826 (2015)

    MathSciNet  MATH  Google Scholar 

  45. Pohl, V., Yang, F., Boche, H.: Phaseless signal recovery in infinite dimensional spaces using structured modulations. J. Fourier Anal. Appl. 20, 1212–1233 (2014)

    MathSciNet  MATH  Google Scholar 

  46. Ron, A.: A necessary and sufficient condition for the linear independence of the integer translates of a compactly supported distribution. Constr. Approx. 5, 297–308 (1989)

    MathSciNet  MATH  Google Scholar 

  47. Ron, A., Shen, Z.: Weyl-Heisenberg frames and Riesz bases in \(L_{2}({{\mathbb{R}}}^{d})\). Duke Math. J. 89, 237–282 (1997)

    MathSciNet  MATH  Google Scholar 

  48. Schumaker, L.L.: Spline Functions: Basic Theory. Wiley, New York (1981)

    MATH  Google Scholar 

  49. Shechtman, Y., Eldar, Y.C., Cohen, O., Chapman, H.N., Miao, J., Segev, M.: Phase retrieval with application to optical imaging: a contemporary overview. IEEE Signal Process. Mag. 32, 87–109 (2015)

    Google Scholar 

  50. Shenoy, B.A., Mulleti, S., Seelamantula, C.S.: Exact phase retrieval in principal shift-invariant spaces. IEEE Trans. Signal Process. 64, 406–416 (2016)

    MathSciNet  MATH  Google Scholar 

  51. Sun, Q.: Non-uniform average sampling and reconstruction of signals with finite rate of innovation. SIAM J. Math. Anal. 38, 1389–1422 (2006)

    MathSciNet  MATH  Google Scholar 

  52. Sun, Q.: Frames in spaces with finite rate of innovation. Adv. Comput. Math. 28, 301–329 (2008)

    MathSciNet  MATH  Google Scholar 

  53. Sun, Q.: Local reconstruction for sampling in shift-invariant space. Adv. Comput. Math. 32, 335–352 (2010)

    MathSciNet  MATH  Google Scholar 

  54. Sun, Q.: Localized nonlinear functional equations and two sampling problems in signal processing. Adv. Comput. Math. 40, 415–458 (2014)

    MathSciNet  MATH  Google Scholar 

  55. Sun, W.: Phaseless sampling and linear reconstruction of functions in spline spaces. arXiv:1709.04779. Arxiv preprint

  56. Thakur, G.: Reconstruction of bandlimited functions from unsigned samples. J. Fourier Anal. Appl. 17, 720–732 (2011)

    MathSciNet  MATH  Google Scholar 

  57. Unser, M.: Splines: a perfect fit for signal and image processing. IEEE Signal Process. Mag. 16, 22–38 (1999)

    Google Scholar 

  58. Unser, M.: Sampling 50 years after Shannon. Proc. IEEE 88, 569–587 (2000)

    MATH  Google Scholar 

  59. Vetterli, M., Marziliano, P., Blu, T.: Sampling signals with finite rate of innovation. IEEE Trans. Signal Process. 50, 1417–1428 (2002)

    MathSciNet  MATH  Google Scholar 

  60. Wahba, G.: Spline Models for Observational Data. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 59. SIAM, Philadelphia (1990)

    MATH  Google Scholar 

  61. Wang, Y., Xu, Z.: Phase retrieval for sparse signals. Appl. Comput. Harmon. Anal. 37, 531–544 (2014)

    MathSciNet  MATH  Google Scholar 

  62. Yang, Da., Yang, Do., Hu, G.: The Hardy Space \(H^{1}\) with Non-doubling Measures and Their Applications. Lecture Notes in Mathematics. Springer, Berlin (2013)

    MATH  Google Scholar 

  63. Yin, P., Xin, J.: PhaseLiftOff: an accurate and stable phase retrieval method based on difference of trace and Frobenius norms. Commun. Math. Sci. 13, 1033–1049 (2014)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

The authors thank Professor Ingrid Daubechies and the reviewer for their constructive suggestions and valuable comments in the preparation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Cheng.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is partially supported by Simons Math+X Investigators Award 400837 and the National Science Foundation (DMS-1638521 and DMS-1816313).

Appendix A: Density of Phaseless Sampling Sets

Appendix A: Density of Phaseless Sampling Sets

In the appendix, we introduce a necessary condition on a discrete set \(\Gamma \) such that \({\mathcal{M}}_{f, \Gamma }={\mathcal{M}}_{f}\) for all \(f\in V(\Phi )\). We show that the density of such a discrete set \(\Gamma \) is no less than the innovative rate of signals in \(V(\Phi )\), see Theorem A.1 and Corollary A.2.

Theorem A.1

Let the domain \(D\), the generator \(\Phi : = (\phi _{\lambda })_{\lambda \in \Lambda }\), the family \({\mathcal{T}}=\{T_{\theta }, \theta \in \Theta \}\) of open sets and the linear space \(V(\Phi )\) be as in Theorem 5.3, and let \(\Gamma \subset D\). If \({\mathcal{M}}_{f, \Gamma }={\mathcal{M}}_{f}\) for all \(f\in V(\Phi )\) with \({\mathcal{M}}_{f}=\{\pm f\}\), then

$$ D_{+}(\Gamma )\ge D_{+}(\Lambda ). $$
(A.1)

Proof

Take \(x_{0}\in D\) and \(r\ge r_{0}\). By (2.2) and (2.3), it suffices to prove that

$$ \#(\Gamma \cap B(x_{0}, r))\ge \# (\Lambda \cap B(x_{0}, r-r_{0})). $$
(A.2)

Assume, on the contrary, that (A.2) does not hold. Then we can find a nonzero vector \((d_{\lambda })_{\lambda \in \Lambda \cap B(x_{0}, r-r_{0})}\) such that

$$ \sum _{\lambda \in \Lambda \cap B(x_{0}, r-r_{0})} d_{\lambda }\phi _{\lambda }(\gamma )=0, \ \gamma \in \Gamma \cap B(x_{0}, r). $$
(A.3)

Recall that \(\phi _{\lambda }, \lambda \in \Lambda \), are supported in \(B(\lambda , r_{0})\) by Assumption 2.2. Hence

$$ \sum _{\lambda \in \Lambda \cap B(x_{0}, r-r_{0})} d_{\lambda }\phi _{\lambda }(\gamma )=0, \ \gamma \in \Gamma \backslash B(x_{0}, r). $$
(A.4)

Therefore the set

$$ W=\Big\{ f:=\sum _{\lambda \in \Lambda \cap B(x_{0}, r-r_{0})} c_{\lambda }\phi _{\lambda }: \ f(\gamma )=0, \ \gamma \in \Gamma \Big\} \subset V(\Phi ) $$

contains nonzero signals. Take a nonzero signal \(f\in W\). By Theorem 4.4, \(f=\sum _{i\in I} f_{i}\) for some nonzero signals \(f_{i}\in V(\Phi ), i\in I\), such that \({\mathcal{M}}_{f_{i}}=\{\pm f_{i}\}, i\in I\), and \(f_{i}f_{i}'=0\) for all distinct \(i, i'\in I\). This together with \(f\in W\) implies that \(f_{i}(\gamma )=0\) for all \(\gamma \in \Gamma \) and \(i\in I\). Hence \(0\in {\mathcal{M}}_{f_{i}, \Gamma }, i\in I\), which contradicts with \({\mathcal{M}}_{f_{i}, \Gamma }= {\mathcal{M}}_{f_{i}}=\{\pm f_{i}\}, i \in I\). □

From the above argument, we have the following result without the assumption on the family \({\mathcal{T}}\) of open sets in Theorem A.1.

Corollary A.2

Let the domain \(D\) and the generator \(\Phi =(\phi _{\lambda })_{\lambda \in \Lambda }\) satisfy Assumptions 2.1and 2.2respectively, and define the linear space \(V(\Phi )\) by (1.1). If \(\Gamma \) is a discrete set with \({\mathcal{M}}_{f, \Gamma }={\mathcal{M}}_{f}\) for all \(f\in V(\Phi )\), then \(D_{+}(\Gamma )\ge D_{+}(\Lambda )\).

We finish this appendix with a remark that the lower bound in (A.1) can be reached when the generator \(\Phi =(\phi _{\lambda })_{\lambda \in \Lambda }\) satisfies that

$$ S_{\Phi }(\lambda , \lambda ')=\emptyset \ {\mathrm{for \ all\ distinct}} \ \lambda , \lambda '\in \Lambda . $$
(A.5)

As in this case, a signal \(f\in V(\Phi )\) is nonseparable if and only if \(f=c_{\lambda }\phi _{\lambda }\) for some \(\lambda \in \Lambda \). Thus the set \(\Gamma =\{ a(\lambda ), \lambda \in \Lambda \}\) is a phaseless sampling set whose upper density is the same as the rate of innovation, where \(a(\lambda ), \lambda \in \Lambda \), are chosen so that \(\phi _{\lambda }(a(\lambda ))\ne 0\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, C., Sun, Q. Stable Phaseless Sampling and Reconstruction of Real-Valued Signals with Finite Rate of Innovation. Acta Appl Math 171, 3 (2021). https://doi.org/10.1007/s10440-020-00371-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10440-020-00371-5

Keywords

Navigation