Skip to main content
Log in

Global Existence and Long-Time Behavior of Solutions to the Vlasov–Poisson–Fokker–Planck System

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

In this paper, we study the global existence of solutions to the Vlasov–Poisson–Fokker–Planck system in the whole space by using the refined energy method. In the proof, the a priori estimates on the macroscopic and microscopic components of solutions are obtained by use of the macroscopic balance laws. As a by-product, the algebraic decay rate of solutions converge to the global Maxwellian, which established by employing the Fourier analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bonilla, L.L., Carrillo, J.A., Soler, J.: Asymptotic behavior of an initial–boundary value problem for the Vlasov–Poisson–Fokker–Planck system. SIAM J. Appl. Math. 57, 1343–1372 (1997)

    Article  MathSciNet  Google Scholar 

  2. Bouchut, F.: Existence and uniqueness of a global smooth solution for the Vlasov–Poisson–Fokker–Planck system in three dimensions. J. Funct. Anal. 111, 239–258 (1993)

    Article  MathSciNet  Google Scholar 

  3. Bouchut, F.: Smoothing effect for the non-linear Vlasov–Poisson–Fokker–Planck system. J. Differ. Equ. 122, 225–238 (1995)

    Article  MathSciNet  Google Scholar 

  4. Carpio, A.: Long-time behaviour for solutions of the Vlasov–Poisson–Fokker–Planck equation. Math. Methods Appl. Sci. 21, 985–1014 (1998)

    Article  MathSciNet  Google Scholar 

  5. Carrillo, J.A.: Global weak solutions for the initial–boundary value problems to the Vlasov–Poisson–Fokker–Planck system. Math. Methods Appl. Sci. 21, 907–938 (1998)

    Article  MathSciNet  Google Scholar 

  6. Carrillo, J.A., Soler, J.: On the initial value problem for the Vlasov–Poisson–Fokker–Planck system with initial data in \(L^{p}\) spaces. Math. Methods Appl. Sci. 18, 825–839 (1995)

    Article  MathSciNet  Google Scholar 

  7. Carrillo, J.A., Soler, J., Vazquez, J.L.: Asymptotic behaviour and self-similarity for the three-dimensional Vlasov–Poisson–Fokker–Planck system. J. Funct. Anal. 141, 99–132 (1996)

    Article  MathSciNet  Google Scholar 

  8. Carrillo, J.A., Duan, R.J., Moussa, A.: Global classical solutions close to equilibrium to the Vlasov–Fokker–Planck–Euler system. Kinet. Relat. Models 4, 227–258 (2011)

    Article  MathSciNet  Google Scholar 

  9. Castella, F.: The Vlasov–Poisson–Fokker–Planck system with infinite kinetic energy. Indiana Univ. Math. J. 47, 939–964 (1998)

    Article  MathSciNet  Google Scholar 

  10. Duan, R.J., Liu, S.Q.: Cauchy problem on the Vlasov–Fokker–Planck equation coupled with the compressible Euler equations through the friction force. Kinet. Relat. Models 6, 687–700 (2013)

    Article  MathSciNet  Google Scholar 

  11. Duan, R.J., Liu, S.Q.: Time-periodic solutions of the Vlasov–Poisson–Fokker–Planck system. Acta Math. Sci. Ser. B Engl. Ed. 3, 876–886 (2015)

    Article  MathSciNet  Google Scholar 

  12. Duan, R.J., Fornasier, M., Toscani, G.: A kinetic flocking model with diffusion. Commun. Math. Phys. 300, 95–145 (2010)

    Article  MathSciNet  Google Scholar 

  13. Glassey, R., Schaeffer, J., Zheng, Y.X.: Steady states of the Vlasov–Poisson–Fokker–Planck system. J. Math. Anal. Appl. 202, 1058–1075 (1996)

    Article  MathSciNet  Google Scholar 

  14. Guo, Y.: The Vlasov–Poisson–Boltzmann system near Maxwellians. Commun. Pure Appl. Math. 55, 1104–1135 (2002)

    Article  MathSciNet  Google Scholar 

  15. Guo, Y.: The Boltzmann equation in the whole space. Indiana Univ. Math. J. 53, 1081–1094 (2004)

    Article  MathSciNet  Google Scholar 

  16. Hérau, F., Thomann, L.: On global existence and trend to the equilibrium for the Vlasov–Poisson–Fokker–Planck system with exterior confining potential. J. Funct. Anal. 271, 1301–1340 (2016)

    Article  MathSciNet  Google Scholar 

  17. Hwang, H.J., Jang, J.: On the Vlasov–Poisson–Fokker–Planck equation near Maxwellian. Discrete Contin. Dyn. Syst., Ser. B 18, 681–691 (2013)

    MathSciNet  MATH  Google Scholar 

  18. Luo, L., Yu, H.J.: Global solutions to the relativistic Vlasov–Poisson–Fokker–Planck system. Kinet. Relat. Models 9, 393–405 (2016)

    Article  MathSciNet  Google Scholar 

  19. Ono, K.: Global existence of regular solutions for the Vlasov–Poisson–Fokker–Planck system. J. Math. Anal. Appl. 263, 626–636 (2001)

    Article  MathSciNet  Google Scholar 

  20. Pulvirenti, M., Simeoni, C.: \(L^{\infty }\)-estimates for the Vlasov–Poisson–Fokker–Planck equation. Math. Methods Appl. Sci. 23, 923–935 (2000)

    Article  MathSciNet  Google Scholar 

  21. Soler, J.: Asymptotic behaviour for the Vlasov–Poisson–Fokker–Planck system. Nonlinear Anal. 30, 5217–5228 (1997)

    Article  MathSciNet  Google Scholar 

  22. Victory, H.D.: On the existence of global weak solutions for Vlasov–Poisson–Fokker–Planck systems. J. Math. Anal. Appl. 160, 525–555 (1991)

    Article  MathSciNet  Google Scholar 

  23. Victory, H.D., O’Dwyer, B.P.: On classical solutions of Vlasov–Poisson–Fokker–Planck systems. Indiana Univ. Math. J. 39, 105–156 (1990)

    Article  MathSciNet  Google Scholar 

  24. Villani, C.: Hypocoercivity. Mem. Amer. Math. Soc., vol. 202, (2009)

    MATH  Google Scholar 

  25. Yang, T., Yu, H.J.: Hypocoercivity of the relativistic Boltzmann and Landau equations in the whole space. J. Differ. Equ. 248, 1518–1560 (2010)

    Article  MathSciNet  Google Scholar 

  26. Yang, T., Yu, H.J.: Global classical solutions for the Vlasov–Maxwell–Fokker–Planck system. SIAM J. Math. Anal. 42, 459–488 (2010)

    Article  MathSciNet  Google Scholar 

  27. Yang, T., Yu, H.J.: Optimal convergence rates of classical solutions for Vlasov–Poisson–Boltzmann system. Commun. Math. Phys. 301, 319–355 (2011)

    Article  MathSciNet  Google Scholar 

  28. Yang, T., Yu, H.J.: Global solutions to the relativistic Landau–Maxwell system in the whole space. J. Math. Pures Appl. 97, 602–634 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

The work is supported by the National Natural Science Foundation of China under Grant No. 41962019. The author would like to thank the referee for the valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolong Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X. Global Existence and Long-Time Behavior of Solutions to the Vlasov–Poisson–Fokker–Planck System. Acta Appl Math 170, 853–881 (2020). https://doi.org/10.1007/s10440-020-00361-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-020-00361-7

Mathematics Subject Classification

Keywords

Navigation