Abstract
In this paper, we study the global existence of solutions to the Vlasov–Poisson–Fokker–Planck system in the whole space by using the refined energy method. In the proof, the a priori estimates on the macroscopic and microscopic components of solutions are obtained by use of the macroscopic balance laws. As a by-product, the algebraic decay rate of solutions converge to the global Maxwellian, which established by employing the Fourier analysis.
Similar content being viewed by others
References
Bonilla, L.L., Carrillo, J.A., Soler, J.: Asymptotic behavior of an initial–boundary value problem for the Vlasov–Poisson–Fokker–Planck system. SIAM J. Appl. Math. 57, 1343–1372 (1997)
Bouchut, F.: Existence and uniqueness of a global smooth solution for the Vlasov–Poisson–Fokker–Planck system in three dimensions. J. Funct. Anal. 111, 239–258 (1993)
Bouchut, F.: Smoothing effect for the non-linear Vlasov–Poisson–Fokker–Planck system. J. Differ. Equ. 122, 225–238 (1995)
Carpio, A.: Long-time behaviour for solutions of the Vlasov–Poisson–Fokker–Planck equation. Math. Methods Appl. Sci. 21, 985–1014 (1998)
Carrillo, J.A.: Global weak solutions for the initial–boundary value problems to the Vlasov–Poisson–Fokker–Planck system. Math. Methods Appl. Sci. 21, 907–938 (1998)
Carrillo, J.A., Soler, J.: On the initial value problem for the Vlasov–Poisson–Fokker–Planck system with initial data in \(L^{p}\) spaces. Math. Methods Appl. Sci. 18, 825–839 (1995)
Carrillo, J.A., Soler, J., Vazquez, J.L.: Asymptotic behaviour and self-similarity for the three-dimensional Vlasov–Poisson–Fokker–Planck system. J. Funct. Anal. 141, 99–132 (1996)
Carrillo, J.A., Duan, R.J., Moussa, A.: Global classical solutions close to equilibrium to the Vlasov–Fokker–Planck–Euler system. Kinet. Relat. Models 4, 227–258 (2011)
Castella, F.: The Vlasov–Poisson–Fokker–Planck system with infinite kinetic energy. Indiana Univ. Math. J. 47, 939–964 (1998)
Duan, R.J., Liu, S.Q.: Cauchy problem on the Vlasov–Fokker–Planck equation coupled with the compressible Euler equations through the friction force. Kinet. Relat. Models 6, 687–700 (2013)
Duan, R.J., Liu, S.Q.: Time-periodic solutions of the Vlasov–Poisson–Fokker–Planck system. Acta Math. Sci. Ser. B Engl. Ed. 3, 876–886 (2015)
Duan, R.J., Fornasier, M., Toscani, G.: A kinetic flocking model with diffusion. Commun. Math. Phys. 300, 95–145 (2010)
Glassey, R., Schaeffer, J., Zheng, Y.X.: Steady states of the Vlasov–Poisson–Fokker–Planck system. J. Math. Anal. Appl. 202, 1058–1075 (1996)
Guo, Y.: The Vlasov–Poisson–Boltzmann system near Maxwellians. Commun. Pure Appl. Math. 55, 1104–1135 (2002)
Guo, Y.: The Boltzmann equation in the whole space. Indiana Univ. Math. J. 53, 1081–1094 (2004)
Hérau, F., Thomann, L.: On global existence and trend to the equilibrium for the Vlasov–Poisson–Fokker–Planck system with exterior confining potential. J. Funct. Anal. 271, 1301–1340 (2016)
Hwang, H.J., Jang, J.: On the Vlasov–Poisson–Fokker–Planck equation near Maxwellian. Discrete Contin. Dyn. Syst., Ser. B 18, 681–691 (2013)
Luo, L., Yu, H.J.: Global solutions to the relativistic Vlasov–Poisson–Fokker–Planck system. Kinet. Relat. Models 9, 393–405 (2016)
Ono, K.: Global existence of regular solutions for the Vlasov–Poisson–Fokker–Planck system. J. Math. Anal. Appl. 263, 626–636 (2001)
Pulvirenti, M., Simeoni, C.: \(L^{\infty }\)-estimates for the Vlasov–Poisson–Fokker–Planck equation. Math. Methods Appl. Sci. 23, 923–935 (2000)
Soler, J.: Asymptotic behaviour for the Vlasov–Poisson–Fokker–Planck system. Nonlinear Anal. 30, 5217–5228 (1997)
Victory, H.D.: On the existence of global weak solutions for Vlasov–Poisson–Fokker–Planck systems. J. Math. Anal. Appl. 160, 525–555 (1991)
Victory, H.D., O’Dwyer, B.P.: On classical solutions of Vlasov–Poisson–Fokker–Planck systems. Indiana Univ. Math. J. 39, 105–156 (1990)
Villani, C.: Hypocoercivity. Mem. Amer. Math. Soc., vol. 202, (2009)
Yang, T., Yu, H.J.: Hypocoercivity of the relativistic Boltzmann and Landau equations in the whole space. J. Differ. Equ. 248, 1518–1560 (2010)
Yang, T., Yu, H.J.: Global classical solutions for the Vlasov–Maxwell–Fokker–Planck system. SIAM J. Math. Anal. 42, 459–488 (2010)
Yang, T., Yu, H.J.: Optimal convergence rates of classical solutions for Vlasov–Poisson–Boltzmann system. Commun. Math. Phys. 301, 319–355 (2011)
Yang, T., Yu, H.J.: Global solutions to the relativistic Landau–Maxwell system in the whole space. J. Math. Pures Appl. 97, 602–634 (2012)
Acknowledgement
The work is supported by the National Natural Science Foundation of China under Grant No. 41962019. The author would like to thank the referee for the valuable comments and suggestions.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Wang, X. Global Existence and Long-Time Behavior of Solutions to the Vlasov–Poisson–Fokker–Planck System. Acta Appl Math 170, 853–881 (2020). https://doi.org/10.1007/s10440-020-00361-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10440-020-00361-7