Skip to main content
Log in

Lie Symmetries Methods in Boundary Crossing Problems for Diffusion Processes

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

This paper uses Lie symmetry methods to analyze boundary crossing probabilities for a large class of diffusion processes. We show that if the Fokker–Planck–Kolmogorov equation has non-trivial Lie symmetry, then the boundary crossing identity exists and depends only on parameters of process and symmetry. For time-homogeneous diffusion processes we found the necessary and sufficient conditions of the symmetries’ existence. This paper shows that if a drift function satisfies one of a family of Riccati equations, then the problem has nontrivial Lie symmetries. For each case we present symmetries in explicit form. Based on obtained results, we derive two-parametric boundary crossing identities and prove its uniqueness. Further, we present boundary crossing identities between different process. We show, that if the problem has 6 or 4 group of symmetries then the first passage time density to any boundary can be explicitly represented in terms of the first passage time by a Brownian motion or a Bessel process. Many examples are presented to illustrate the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, 10nd edn. Dover publications, New York (1972)

    MATH  Google Scholar 

  2. Alili, L., Patie, P.: On the first crossing times of a Brownian motion and a family of continuous curves. C. R. Acad. Sci. Paris, Ser. I 340, 225–228 (2005)

    MathSciNet  MATH  Google Scholar 

  3. Alili, L., Patie, P., Pedersen, J.L.: Representations of the first hitting time density of an Ornstein—Uhlenbeck process. Stoch. Models 21(4), 967–980 (2005)

    MathSciNet  MATH  Google Scholar 

  4. Alili, L., Patie, P.: Boundary-crossing identities for diffusions having the time-inversion property. J. Theor. Probab. 23(1), 65–85 (2010)

    MathSciNet  MATH  Google Scholar 

  5. Alili, L., Patie, P.: Boundary crossing identities for Brownian motion and some nonlinear ode’s. Proc. Am. Math. Soc. 142(11), 3811–3824 (2014)

    MathSciNet  MATH  Google Scholar 

  6. Bluman, G.W.: On the transformation of diffusion process into the Wiener process. SIAM J. Appl. Math. 39(2), 238–247 (1980)

    MathSciNet  MATH  Google Scholar 

  7. Borodin, A.N., Salminen, P.: Handbook of Brownian Motion—Facts and Formulae, 2nd edn. Birkhauser, Basel (2002)

    MATH  Google Scholar 

  8. Borovkov, K., Downes, A.N.: On boundary crossing probabilities for diffusion processes. Stoch. Process. Appl. 120, 105–129 (2010)

    MathSciNet  MATH  Google Scholar 

  9. Bounocore, A., Nobile, A.G., Ricciardi, L.M.: A new integral equation for the evaluation of first-passage-time for diffusion-processes. J. Appl. Probab. 27(1), 102–114 (1990)

    MathSciNet  Google Scholar 

  10. Charmpi, K., Ycart, B.: Weighted Kolmogorov–Smirnov testing: an alternative for gene set enrichment analysis. Stat. Appl. Genet. Mol. Biol. 14(3), 279–295 (2015)

    MathSciNet  MATH  Google Scholar 

  11. Cherkasov, I.D.: On the transformation of the diffusion process to a Wiener process. Theory Probab. Appl. 2, 373–377 (1957)

    Google Scholar 

  12. Cherkasov, I.D.: Transformation of diffusion equations by Kolmogorov’s method. Sov. Math. Dokl. 21(1), 175–179 (1980)

    MATH  Google Scholar 

  13. Craddock, M., Lennox, K.A.: The calculation of expectations for classes of diffusion processes by Lie symmetry methods. Ann. Appl. Probab. 19(1), 127–157 (2009)

    MathSciNet  MATH  Google Scholar 

  14. Coculescu, D., Geman, H., Jeanblanc, M.: Valuation of default sensitive claims under imperfect information. Finance Stoch. 12, 195–218 (2008)

    MathSciNet  MATH  Google Scholar 

  15. Daniels, H.E.: Minimum of a stationary Markov process superimposed on a U-shaped trend. J. Appl. Probab. 6(2), 399–408 (1969)

    MathSciNet  MATH  Google Scholar 

  16. Deaconu, M., Herrmann, S.: Hitting time for Bessel processes—walk on moving sphere algorithm. Ann. Appl. Probab. 23(6), 2259–2289 (2013)

    MathSciNet  MATH  Google Scholar 

  17. Delarue, F., Inglis, J., Rubenthaler, S., Tanré, E.: First hitting times for general non-homogeneous 1d diffusion processes: density estimates in small time. hal-00870991 (2013)

  18. DeLong, D.: Crossing probabilities for a square root boundary by a Bessel process. Commun. Stat., Theory Methods 10(21), 2197–2213 (1981)

    MathSciNet  MATH  Google Scholar 

  19. Enriquez, N., Sabot, C., Yor, M.: Renewal series and square-root boundary for Bessel process. Electron. Commun. Probab. 13, 649–652 (2008)

    MathSciNet  MATH  Google Scholar 

  20. Ferebee, B.: Tests with parabolic boundary for the drift of a Wiener process. Ann. Stat. 10, 882–894 (1982)

    MathSciNet  MATH  Google Scholar 

  21. Friedman, A.: Stochastic Differential Equations and Its Applications. Dover publications, Mineola, New York (2006)

    MATH  Google Scholar 

  22. Frikha, N., Li, L.: Parametrix method for the first hitting time of an elliptic diffusion with irregular coefficients. Stochastics (2020). https://doi.org/10.1080/17442508.2019.1711092

    Article  Google Scholar 

  23. Garroni, M.G., Menaldi, J.L.: Green Functions for Second Order Parabolic Integro-Differential Problems. Longman Scientific and Technical, Harlow (1992)

    MATH  Google Scholar 

  24. Geman, H., Yor, M.: Pricing and hedging double-barrier options: a probabilistic approach. Math. Finance 6, 365–378 (1996)

    MATH  Google Scholar 

  25. Goard, J.: Fundamental solutions to Kolmogorov equations via reduction to canonical form. J. Appl. Math. Decis. Sci. 2006, 1–24 (2006)

    MathSciNet  MATH  Google Scholar 

  26. Groeneboom, P.: Brownian motion with a parabolic drift and Airy functions. Probab. Theory Relat. Fields 81, 79–109 (1989)

    MathSciNet  Google Scholar 

  27. Gutiérrez, R., Ricciardi, L.M., Román, P., Torres, F.: First passage time densities for time non-homogeneous diffusion processes. J. Appl. Probab. 34, 623–631 (1997)

    MathSciNet  MATH  Google Scholar 

  28. Hamana, Y., Matsumoto, H.: Hitting times of Bessel processes, volume of the Wiener sausages and zeros of Macdonald functions. J. Math. Soc. Jpn. 68(4), 1615–1653 (2016)

    MathSciNet  MATH  Google Scholar 

  29. Hull, J., White, A.: Valuing credit default swaps II: modeling default correlations. J. Deriv. 8, 12–22 (2001)

    MATH  Google Scholar 

  30. Lerche, H.R.: Boundary Crossing of Brownian Motion. Lecture Notes in Statist., vol. 40. Springer, Berlin (1986)

    MATH  Google Scholar 

  31. Linetsky, V.: Computing hitting time densities for CIR and OU diffusions: applications to mean-reverting models. J. Comput. Finance 7, 1–22 (2004)

    Google Scholar 

  32. Kent, J.: Eigenvalue expansions for diffusion hitting times. Z. Wahrscheinlichkeitstheor. Verw. Geb. 52, 309–319 (1980)

    MathSciNet  MATH  Google Scholar 

  33. Kent, J.: The spectral decomposition of a diffusion hitting time. Ann. Appl. Probab. 10, 207–219 (1982)

    MathSciNet  MATH  Google Scholar 

  34. Kahale, N.: Analytic crossing probabilities for certain barriers by Brownian motion. Ann. Appl. Probab. 18(4), 1424–1440 (2008)

    MathSciNet  MATH  Google Scholar 

  35. Kunimoto, N., Ikeda, M.: Pricing options with curved boundaries. Math. Finance 2, 275–298 (1992)

    MATH  Google Scholar 

  36. Novikov, A.: On stopping times for a Wiener process. Theory Probab. Appl. 16, 458–465 (1971)

    MathSciNet  MATH  Google Scholar 

  37. Novikov, A., Frishling, V., Korzakhia, N.: Approximations of boundary crossing probabilities for a Brownian motion. J. Appl. Probab. 36(4), 1019–1030 (1999)

    MathSciNet  MATH  Google Scholar 

  38. Olver, P.J.: Applications of Lie Groups to Differential Equations, 2nd edn. Graduate Texts in Mathematics, vol. 107. Springer, New York (1993)

    MATH  Google Scholar 

  39. Patie, P., Winter, C.: First exit time probability for multidimensional diffusions: a PDE-based approach. J. Comput. Appl. Math. 222, 42–53 (2008)

    MathSciNet  MATH  Google Scholar 

  40. Pauwels, E.J.: Smooth first-passage time densities for one-dimensional diffusions. J. Appl. Probab. 24(2), 370–377 (1987)

    MathSciNet  MATH  Google Scholar 

  41. Peskir, G.: On the integral equations arising in the first passage problem for Brownian motion. J. Integral Equ. Appl. 14(4), 397–423 (2002)

    MathSciNet  MATH  Google Scholar 

  42. Pitman, J., Yor, M.: Bessel processes and infinitely divisible laws. In: Stochastic Integrals, Proc. Sympos., Univ. Durham, Durham, 1980. Lecture Notes in Math., vol. 851, pp. 285–370. Springer, Berlin (1981)

    Google Scholar 

  43. Redner, S., Metzler, R., Oshanin, G.: First-Passage Phenomena and Their Applications. World Scientific, Singapore (2014)

    MATH  Google Scholar 

  44. Robbins, H., Siegmund, D.: Statistical tests of power one and the integral representation of solutions of certain partial differential equations. Bull. Inst. Math. Acad. Sin. 1, 93–120 (1973)

    MathSciNet  MATH  Google Scholar 

  45. Roberts, H., Shortland, C.F.: Pricing barrier options with time dependent coefficients. Math. Finance 7, 83–93 (1997)

    MATH  Google Scholar 

  46. Rogers, L.C.G., Pitman, J.: Markov functions. Ann. Probab. 9(4), 573–582 (1981)

    MathSciNet  MATH  Google Scholar 

  47. Sacerdote, L.: On the solution of the Fokker–Planck equation for a Feller process. Adv. Appl. Probab. 22, 101–110 (1990)

    MathSciNet  MATH  Google Scholar 

  48. Sacerdote, L., Ricciardi, L.M.: On the transformation of diffusion equations and boundaries into the Kolmogorov equation for the Wiener process. Ric. Mat. XLI(1), 123–135 (1992)

    MathSciNet  MATH  Google Scholar 

  49. Salminen, P.: On the first hitting time and the last exit time for a Brownian motion to/from a moving boundary. Adv. Appl. Probab. 20(2), 411–426 (1988)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Author is grateful to Pierre Patie and Laura Sacerdote for helpful comments and also thank the referees for useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry Muravey.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muravey, D. Lie Symmetries Methods in Boundary Crossing Problems for Diffusion Processes. Acta Appl Math 170, 347–372 (2020). https://doi.org/10.1007/s10440-020-00336-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-020-00336-8

Keywords

Navigation