Skip to main content
Log in

Mathematical Study of an Inflammatory Model for Atherosclerosis: A Nonlinear Renewal Equation

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

In this work we study the coupling of a nonlinear renewal equation to an ordinary differential equation. We start with existence and uniqueness issues for the coupled equations and, in particular cases, we study the long-time behaviour. The novelty here is the nonlinearity in the renewal equation. This model arises in the context of atherosclerosis. The renewal part accounts for the inflammatory process: leucocyte recruitment in the arterial wall, differentiation when internalizing low-density lipoprotein (LDL) and death. The ordinary differential equation describes the LDL dynamics in the arterial wall, leucocyte absorption and release in the blood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Amann, H., Walker, C.: Local and global strong solutions to continuous coagulation-fragmentation equations with diffusion. J. Differ. Equ. 218(1), 159–186 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Blanchet, A., Dolbeault, J., Perthame, B.: Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions. Electron. J. Differ. Equ. (44) (2006), 32 pp. (electronic)

  3. Calsina, A., Farkas, J.Z.: Steady states in a structured epidemic model with Wentzell boundary condition. J. Evol. Equ. 12, 495–512 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Calvez, V., Ebde, A., Meunier, N., Raoult, A.: Mathematical modeling of the atherosclerotic plaque formation. ESAIM Proc. 28, 1–12 (2009)

    Article  MATH  Google Scholar 

  5. Calvez, V., Lenuzza, N., Oelz, D., Deslys, J.-P., Laurent, P., Mouthon, F., Perthame, B.: Size distribution dependence of prion aggregates infectivity. Math. Biosci. 217, 88–99 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Calvez, V., Houot, J.-G., Meunier, N., Raoult, A., Rusnakova, G.: Mathematical and numerical modeling of early atherosclerotic lesions. ESAIM Proc. 30, 1–14 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chalmers, A.D., Cohen, A., Bursill, C.A., Myerscough, M.R.: Bifurcation and dynamics in a mathematical model of early atherosclerosis. J. Math. Biol. 71(6), 1451–1480 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dirksen, M.T., van der Wal, A.C., van den Berg, F.M., van der Loos, C.M., Becker, A.E.: Distribution of inflammatory cells in atherosclerotic plaques relates to the direction of flow. Circulation 98(19), 2000–2003 (1998)

    Article  Google Scholar 

  9. El Khatib, N., Génieys, S., Volpert, V.: Atherosclerosis initiation modeled as an inflammatory process. Math. Model. Nat. Phenom. 2(2), 126–141 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. El Khatib, N., Génieys, S., Kazmierczak, B., Volpert, V.: Mathematical modelling of atherosclerosis as an inflammatory disease. Philos. Trans. R. Soc. Lond. A, Math. Phys. Eng. Sci. 367(1908), 4876–4886 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. El Khatib, N., Genieys, S., Kazmierczak, B., Volpert, V.: Reaction-diffusion model of atherosclerosis development. J. Math. Biol. 65(2), 349–374 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Farkas, J.Z.: Size-structured populations: immigration, (bi)stability and the net growth rate. J. Appl. Math. Comput. 35(1), 617–633 (2010)

    MathSciNet  MATH  Google Scholar 

  13. Farkas, J.Z., Hagen, T.: Stability and regularity results for a size-structured population model. J. Math. Anal. Appl. 328(1), 119–136 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gabriel, P.: Long-time asymptotics for nonlinear growth-fragmentation equations. Commun. Math. Sci. 10(3), 787–820 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Giri, A.K., Laurençot, P., Warnecke, G.: Weak solutions to the continuous coagulation equation with multiple fragmentation. Nonlinear Anal., Theory Methods Appl. 75(4), 2199–2208 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Grec, B., Maury, B., Meunier, N., Navoret, L.: The role of ligands binding in shear induced leukocyte rolling. J. Theor. Biol. 452, 35–46 (2018)

    Article  MATH  Google Scholar 

  17. Islam, H.: Mathematical modelling of the inflammatory response in coronary artery disease. Ph.D. thesis, Griffith University (2017)

  18. Kolodgie, F.D., Virmani, R., Burke, A.P., Farb, A., Weber, D.K., Kutys, R., Gold, H.K.: Pathologic assessment of the vulnerable human coronary plaque. Heart 90(12), 1385–1391 (2004)

    Article  Google Scholar 

  19. Libby, P.: Inflammation in atherosclerosis. Nature 420, 868–874 (2002)

    Article  Google Scholar 

  20. Lusis, A.J.: Atherosclerosis. Nature 407, 233–241 (2000)

    Article  Google Scholar 

  21. Michel, P., Mischler, S., Perthame, B.: General relative entropy inequality: an illustration on growth models. J. Math. Pures Appl. (9) 84(9), 1235–1260 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Morale, D., Capasso, V., Oelschläger, K.: An interacting particle system modelling aggregation behavior: from individuals to populations. J. Math. Biol. 50(1), 49–66 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Murray, J.D.: Mathematical Biology I: An Introduction. Springer, Berlin (2001)

    Google Scholar 

  24. Perthame, B.: Transport Equations in Biology. Frontiers in Mathematics (2007)

    MATH  Google Scholar 

  25. Rudnicki, R., Wieczorek, R.: Phytoplankton dynamics: from the behavior of cells to a transport equation. Math. Model. Nat. Phenom. 1(1), 81–97 (2010)

    Article  Google Scholar 

  26. Tabas, I.: Macrophage death and defective inflammation resolution in atherosclerosis. Nat. Rev. Immunol. 10(1), 36–46 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Meunier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meunier, N., Muller, N. Mathematical Study of an Inflammatory Model for Atherosclerosis: A Nonlinear Renewal Equation. Acta Appl Math 161, 107–126 (2019). https://doi.org/10.1007/s10440-018-0206-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-018-0206-x

Keywords

Navigation