Advertisement

Exact Solutions in Optimal Design Problems for Stationary Diffusion Equation

  • Krešimir Burazin
  • Marko Vrdoljak
Article
  • 12 Downloads

Abstract

We consider two-phase multiple state optimal design problems for stationary diffusion equation. Both phases are taken to be isotropic, and the goal is to find the optimal distribution of materials within domain, with prescribed amounts, that minimizes a weighted sum of energies. In the case of one state equation, it is known that the proper relaxation of the problem via the homogenization theory is equivalent to a simpler relaxed problem, stated only in terms of the local proportion of given materials.

We prove an analogous result for multiple state problems if the number of states is less than the space dimension. In spherically symmetric case, the result holds for arbitrary number of states, and the optimality conditions of a simpler relaxation problem, which are necessary and sufficient, enable us to explicitly calculate the unique solution of proper relaxation for some examples. In contrary to maximization problems, these solutions are not classical.

Keywords

Stationary diffusion Optimal design Homogenization Saddle point Optimality conditions 

Mathematics Subject Classification (2010)

80A20 49K35 49K20 49J20 80M40 

References

  1. 1.
    Allaire, G.: Shape Optimization by the Homogenization Method. Springer, Berlin (2002) CrossRefzbMATHGoogle Scholar
  2. 2.
    Antonić, N., Vrdoljak, M.: Sequential laminates in multiple state optimal design problems. Math. Probl. Eng. 2006, 68695 (2006).  https://doi.org/10.1155/MPE/2006/68695 MathSciNetzbMATHGoogle Scholar
  3. 3.
    Antonić, N., Vrdoljak, M.: Gradient methods for multiple state optimal design problems. Ann. Univ. Ferrara, Sez. 7: Sci. Mat. 53, 177–187 (2007) MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Burazin, K.: On unique solutions of multiple-state optimal design problems on an annulus. J. Optim. Theory Appl. 177, 329–344 (2018).  https://doi.org/10.1007/s10957-018-1284-7 MathSciNetCrossRefGoogle Scholar
  5. 5.
    Burazin, K., Crnjac, I., Vrdoljak, M.: Variant of optimality criteria method for multiple state optimal design problems. Commun. Math. Sci., accepted for publication, 18 pp. Google Scholar
  6. 6.
    Casado-Diaz, J.: Smoothness properties for the optimal mixture of two isotropic materials: the compliance and eigenvalue problems. SIAM J. Control Optim. 53, 2319–2349 (2015) MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Casado-Diaz, J.: Some smoothness results for the optimal design of a two-composite material which minimizes the energy. Calc. Var. Partial Differ. Equ. 53, 649–673 (2015) MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Ekeland, I., Temam, R.: Convex Analysis and Variational Problems. SIAM, Philadelphia (1999) CrossRefzbMATHGoogle Scholar
  9. 9.
    Goodman, J., Kohn, R.V., Reyna, L.: Numerical study of a relaxed variational problem from optimal design. Comput. Methods Appl. Mech. Eng. 57, 107–127 (1986) MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Ioffe, A.D., Tihomirov, V.M.: Theory of Extremal Problems. Elsevier, Amsterdam (1979) zbMATHGoogle Scholar
  11. 11.
    Lurie, K.A., Cherkaev, A.V.: Exact estimates of conductivity of composites formed by two isotropically conducting madia, taken in prescribed proportion. Proc. R. Soc. Edinb. 99A, 71–87 (1984) CrossRefzbMATHGoogle Scholar
  12. 12.
    Murat, F., Tartar, L.: Calcul des Variations et Homogénéisation. In: Les Méthodes de l’Homogenisation Théorie et Applications en Physique. Collect. Dir. Études Rech. Élec. France, vol. 57, pp. 319–369. Eyrolles, Paris (1985) Google Scholar
  13. 13.
    Tartar, L.: Estimations fines des coefficients homogénéisés. In: Krée, P. (ed.) Ennio DeGiorgi colloquium. Res. Notes Math., vol. 125, pp. 168–187. Pitman, London (1985) Google Scholar
  14. 14.
    Tartar, L.: The appearance of oscillations in optimization problems. In: Non-Classical Continuum Mechanics, Durham, 1986. London Math. Soc. Lecture Note Ser., vol. 122, pp. 129–150. Cambridge University Press, Cambridge (1987) CrossRefGoogle Scholar
  15. 15.
    Tartar, L.: Remarks on homogenization method in optimal design problems. In: Homogenization and Applications to Material Sciences, Nice, 1995. GAKUTO Internat. Ser. Math. Sci. Appl., vol. 9, pp. 393–412. Gakkokotosho, Tokyo (1995) Google Scholar
  16. 16.
    Tartar, L.: An introduction to the homogenization method in optimal design. In: Cellina, A., Ornelas, A. (eds.) Optimal Shape Design, Troia, 1998. Lecture Notes in Math., vol. 1740, pp. 47–156. Springer, Berlin (2000) CrossRefGoogle Scholar
  17. 17.
    Vrdoljak, M.: On Hashin–Shtrikman bounds for mixtures of two isotropic materials. Nonlinear Anal., Real World Appl. 11, 4597–4606 (2010) MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Vrdoljak, M.: Classical optimal design in two-phase conductivity problems. SIAM J. Control Optim. 54(4), 2020–2035 (2016) MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of OsijekOsijekCroatia
  2. 2.Department of Mathematics, Faculty of ScienceUniversity of ZagrebZagrebCroatia

Personalised recommendations