Advertisement

Stability of the Equilibrium to the Vlasov-Poisson-Boltzmann System with Non-constant Background Charge

  • Xiuhui Yang
  • Xiujuan Li
Article

Abstract

We study the global existence of classical solution to the Vlasov-Poisson-Boltzmann system with non-constant background charge. In this case the local Maxwellian is the unique stationary state. We show that this equilibrium is nonlinear stable provided that the initial perturbation is sufficient small. Our result solves an open problem stated by Duan and Yang (SIAM J. Math. Anal. 41(6):2353–2387, 2009) in one dimensional case.

Keywords

Vlasov-Poisson-Boltzmann system Non-constant background charge Stability 

Mathematics Subject Classification

76P05 82C40 35B35 

Notes

Acknowledgements

The authors are very grateful to the referees for their helpful suggestions, which improved the earlier version of this paper. Yang is supported by the Fundamental Research Funds for the Central Universities (Grant No. NS2012122). Li is supported by the Fundamental Research Funds for the Central Universities (Grant No. 56XZA14010).

References

  1. 1.
    Duan, R., Liu, S.: The Vlasov-Poisson-Boltzmann system without angular cutoff. Commun. Math. Phys. 324(1), 1–45 (2013) MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Duan, R., Liu, S.: Global stability of the rarefaction wave of the Vlasov-Poisson-Boltzmann system. SIAM J. Math. Anal. 47(5), 3585–3647 (2015) MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Duan, R., Strain, R.-M.: Optimal time decay of the Vlasov-Poisson-Boltzmann system in \(\mathbb{R}^{3}\). Arch. Ration. Mech. Anal. 199(1), 291–328 (2011) MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Duan, R., Yang, T.: Stability of the one-species Vlasov-Poisson-Boltzmann system. SIAM J. Math. Anal. 41(6), 2353–2387 (2009) MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Duan, R., Yang, T., Zhu, C.: Existence of stationary solutions to the Vlasov-Poisson-Boltzmann system. J. Math. Anal. Appl. 327(1), 425–434 (2007) MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Duan, R., Yang, T., Zhao, H.: The Vlasov-Poisson-Boltzmann system in the whole space: the hard potential case. J. Differ. Equ. 252(12), 6356–6386 (2012) MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Duan, R., Yang, T., Zhao, H.: The Vlasov-Poisson-Boltzmann system for soft potentials. Math. Models Methods Appl. Sci. 23(6), 979–1028 (2013) MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Esposito, R., Guo, Y., Marra, R.: Phase transition in a Vlasov-Boltzmann binary mixture. Commun. Math. Phys. 296(1), 1–33 (2010) MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Glassey, R., Schaeffer, J., Zheng, Y.-X.: Steady states of the Vlasov-Poisson-Fokker-Planck system. J. Math. Anal. Appl. 202(3), 1058–1075 (1996) MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Guo, Y.: The Vlasov-Poisson-Boltzmann system near Maxwellians. Commun. Pure Appl. Math. 55, 1104–1135 (2002) MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Guo, Y.: Bounded solutions to the Boltzmann equation. Q. Appl. Math. 68(1), 143–148 (2010) MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Guo, Y.: Decay and continuity of Boltzmann equation in bounded domains. Arch. Ration. Mech. Anal. 197(3), 713–809 (2010) MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Li, H.-L., Yang, T., Zhong, M.: Spectrum analysis and optimal decay rates of the bipolar Vlasov-Poisson-Boltzmann equations. Indiana Univ. Math. J. 65(2), 665–725 (2016) MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Li, H.-L., Wang, Y., Yang, T., Zhong, M.: Stability of nonlinear wave patterns to the bipolar Vlasov-Poisson-Boltzmann system. Arch. Ration. Mech. Anal. 228(1), 39–127 (2018) MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Wang, Y.: Decay of the two-species Vlasov-Poisson-Boltzmann system. J. Differ. Equ. 254(5), 2304–2340 (2013) MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Xiao, Q., Xiong, L., Zhao, H.: The Vlasov-Poisson-Boltzmann system with angular cutoff for soft potentials. J. Differ. Equ. 255(6), 1196–1232 (2013) MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Xiao, Q., Xiong, L., Zhao, H.: The Vlasov-Poisson-Boltzmann system for non-cutoff hard potentials. Sci. China Math. 57(3), 515–540 (2014) MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Yang, T., Yu, H.: Optimal convergence rates of classical solutions for Vlasov-Poisson-Boltzmann system. Commun. Math. Phys. 301(2), 319–355 (2011) MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Yang, T., Zhao, H.: Global existence of classical solutions to the Vlasov-Poisson-Boltzmann system. Commun. Math. Phys. 268(3), 569–605 (2006) MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Yang, T., Yu, H., Zhao, H.: Cauchy problem to Vlasov-Poisson-Boltzmann system. Arch. Ration. Mech. Anal. 182(3), 415–470 (2006) MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematics, College of ScienceNanjing University of Aeronautics and AstronauticsNanjingP.R. China

Personalised recommendations