Skip to main content
Log in

Quasiperiodic Dynamics and Magnetoresistance in Normal Metals

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

In this article we give a brief survey on the physics and mathematics of the phenomenon of conductivity in metals under a strong magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. This “near to zero temperature” approximation holds in general for metals since for them \(\varepsilon _{F}\simeq 10^{4}\mbox{--}10^{5}~\mbox{K}\), at least an order of magnitude above their melting point.

  2. Private communication.

References

  1. Abrikosov, A.: Fundamentals of the Theory of Metals. North Holland, Amsterdam (1988)

    Google Scholar 

  2. Alexeevskii, N., Gaidukov, Y.: Concerning the Fermi surface of Tin. J. Exp. Theor. Phys. 14, 770 (1962)

    Google Scholar 

  3. Avila, A., Hubert, P., Skripchenko, A.: Diffusion for chaotic plane sections of 3-periodic surfaces. Invent. Math. 206(1), 109–146 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Avila, A., Hubert, P., Skripchenko, A.: On the Hausdorff dimension of the Rauzy gasket. Bull. Soc. Math. Fr. 144(3), 539–568 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bian, Q.: Magnetoresistance and Fermi surface of copper single crystals containing dislocations. Ph.D. thesis (2010). http://hdl.handle.net/11375/18932

  6. Bian, Q., Niewczas, M.: Theory of magnetoresistance due to lattice dislocations in face-centred cubic metals. Philos. Mag. 96(17), 1832–1860 (2016)

    Article  Google Scholar 

  7. Bohl, P.: Ueber die darstellung von Functionen einer variabeln durch trigonometrische reihen mit mehreren einer variabeln Proportionalen argumenten. Druck von C. Mattiesen (1893)

  8. Bohr, H.: Zur theorie der fastperiodischen funktionen. Acta Math. 47(3), 237–281 (1926)

    Article  MathSciNet  MATH  Google Scholar 

  9. De Leo, R.: Numerical analysis of the Novikov problem of a normal metal in a strong magnetic field. SIAM J. Appl. Dyn. Syst. 2(4), 517–545 (2003). http://epubs.siam.org/sam-bin/dbq/article/40664

    Article  MathSciNet  MATH  Google Scholar 

  10. De Leo, R.: Characterization of the set of “ergodic directions” in the Novikov problem of quasi-electrons orbits in normal metals. Russ. Math. Surv. 58(5), 1042–1043 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. De Leo, R.: Topological effects in the magnetoresistance of Au and Ag. Phys. Lett. A 332, 469–474 (2004)

    Article  MATH  Google Scholar 

  12. De Leo, R.: First-principles generation of Stereographic Maps for high-field magnetoresistance in normal metals: an application to Au and Ag. Physica B 362, 62–75 (2005)

    Article  Google Scholar 

  13. De Leo, R.: NTC: GNU NTC library (1999–2018)

  14. De Leo, R., Dynnikov, I.: Geometry of plane sections of the infinite regular skew polyhedron \(\{4,6|4\}\). Geom. Dedic. 138(1), 51–67 (2009)

    Article  MathSciNet  Google Scholar 

  15. Dynnikov, I.: Surfaces in 3-torus: geometry of plane sections. In: Proc. of ECM2, BuDA (1996)

    Google Scholar 

  16. Dynnikov, I.: Semiclassical motion of the electron. A proof of the Novikov conjecture in general position and counterexamples. In: AMS Transl., vol. 179, pp. 45–73 (1997)

    Google Scholar 

  17. Dynnikov, I.: The geometry of stability regions in Novikov’s problem on the semiclassical motion of an electron. Russ. Math. Surv. 54(1), 21–60 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dynnikov, I., Novikov, S.: Topology of quasiperiodic functions on the plane. Russ. Math. Surv. 60(1), 1–26 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dynnikov, I., Skripchenko, A.: Symmetric band complexes of thin type and chaotic sections which are not quite chaotic. Trans. Mosc. Math. Soc. 76, 251–269 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Esclangon, E.: Les fonctions quasi-périodiques. Gauthier-Villars, Paris (1904)

    MATH  Google Scholar 

  21. Gaidukov, Y.: Topology of the Fermi surface for Gold. J. Exp. Theor. Phys. 10(5), 913 (1960)

    Google Scholar 

  22. Guillemin, V., Sternberg, S.: Symplectic Techniques in Physics. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  23. Kaganov, A., Peschanskii, V.: Phys. Rep. 372, 445–487 (2002)

    Article  Google Scholar 

  24. Lifshitz, I., Kaganov, A.: Sov. Phys. 2(6), 831–835 (1960)

    Article  Google Scholar 

  25. Lifshitz, I., Kaganov, A.: Sov. Phys. 5(6), 878–907 (1963)

    Article  Google Scholar 

  26. Lifshitz, I., Kaganov, A.: Sov. Phys. 8(6), 805–851 (1966)

    Article  Google Scholar 

  27. Lifshitz, I., Peschanskii, V.: Galvanomagnetic characteristics of metals with open Fermi surfaces I. J. Exp. Theor. Phys. 8, 875 (1959)

    Google Scholar 

  28. Lifshitz, I., Peschanskii, V.: Galvanomagnetic characteristics of metals with open Fermi surfaces II. J. Exp. Theor. Phys. 11, 137 (1960)

    Google Scholar 

  29. Lifshitz, I., Azbel, M., Kaganov, M.: On the theory of galvanomagnetic effects in metals. J. Exp. Theor. Phys. 3, 143 (1956)

    Google Scholar 

  30. Lifshitz, I., Azbel, M., Kaganov, M.: The theory of galvanomagnetic effects in metals. J. Exp. Theor. Phys. 4(1), 41 (1957)

    MATH  Google Scholar 

  31. Lifshitz, I., Azbel, M., Kaganov, M.: Electron Theory of Metals. Consultants Bureau, New York (1973)

    Google Scholar 

  32. Maltsev, A.: Anomalous behavior of the electrical conductivity tensor in strong magnetic fields. J. Exp. Theor. Phys. 85(5), 934–942 (1997)

    Article  Google Scholar 

  33. Maltsev, A.: On the analytical properties of the magneto-conductivity in the case of presence of stable open electron trajectories on a complex Fermi surface. J. Exp. Theor. Phys. 124(5), 805–831 (2017)

    Article  Google Scholar 

  34. Maltsev, A.: Oscillation phenomena and experimental determination of exact mathematical stability zones for magneto-conductivity in metals having complicated Fermi surfaces. J. Exp. Theor. Phys. 125(5), 896–905 (2017)

    Article  Google Scholar 

  35. Maltsev, A.: The second boundaries of stability zones and the angular diagrams of conductivity for metals having complicated Fermi surfaces (2018). arXiv:1804.10762

  36. Maltsev, A., Novikov, S.: Quasiperiodic functions and dynamical systems in quantum solid state physics. Bull. Braz. Math. Soc. 34(1), 171–210 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  37. Maltsev, A., Novikov, S.: Dynamical systems, topology, and conductivity in normal metals. J. Stat. Phys. 115(1–2), 31–46 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  38. Maltsev, A., Novikov, S.: The theory of closed 1-forms, levels of quasiperiodic functions and transport phenomena in electron systems (2018). arXiv:1805.05210

  39. Novikov, S.: Hamiltonian formalism and a multivalued analog of Morse theory. Russ. Math. Surv. 37(5), 3–49 (1982)

    Article  Google Scholar 

  40. Novikov, S.: Quasiperiodic structures in topology. In: Topological Methods in Modern Mathematics, pp. 223–233. Stony Brook, New York (1991). http://www.mi.ras.ru/~snovikov/126.pdf

    Google Scholar 

  41. Novikov, S.: The semiclassical electron in a magnetic field and lattice. Some problems of low dimensional “periodic” topology. Geom. Funct. Anal. 5(2), 434–444 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  42. Novikov, S.: I. Classical and modern topology. II. Topological phenomena in real world physics. In: Modern Birkhauser Classics, vol. GAFA 2000, pp. 406–425 (2000). arXiv:math-ph/0004012

    Google Scholar 

  43. Novikov, S., Mal’tsev, A.: Topological quantum characteristics observed in the investigation of the conductivity in normal metals. JETP Lett. 63(10), 855–860 (1996)

    Article  Google Scholar 

  44. Novikov, S., Maltsev, A.: Topological phenomena in normal metals. Phys. Usp. 41(3), 231–239 (1998)

    Article  Google Scholar 

  45. Novikov, S., Maltsev, A.: Dynamical systems, topology and conductivity in normal metals. J. Stat. Phys. 115, 31–46 (2003). arXiv:Cond-mat/0312708

    MathSciNet  MATH  Google Scholar 

  46. Pippard, A.: An experimental determination of the Fermi surface in Copper. Philos. Trans. R. Soc. A 250, 325 (1957)

    Article  Google Scholar 

  47. Skripchenko, A.: On connectedness of chaotic sections of some 3-periodic surfaces. Ann. Glob. Anal. Geom. 43(3), 253–271 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  48. Zorich, A.: A problem of Novikov on the semiclassical motion of electrons in a uniform almost rational magnetic field. Usp. Mat. Nauk 39(5), 235–236 (1984)

    Google Scholar 

  49. Zorich, A.: Flat surfaces. In: Frontiers in Number Theory, Physics, and Geometry, vol. I, pp. 439–585 (2006)

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to S.P. Novikov for introducing the subject and for his constant interest and support and also thank I.A. Dynnikov for many fruitful discussions on the subject over the years. The numerical data in this article was produced on the High-Performance Computational Clusters of the National Institute of Nuclear Physics (INFN) at Cagliari (Italy) and of the College of Arts and Sciences (CoAS) and of the Center for Computational Biology and Bioinformatics (CCBB) at Howard University (Washington, DC). This material is based upon work supported by the National Science Foundation under Grant No. DMS-1832126 and the project “Dynamics of complex systems” (L.D. Landau Institute for Theoretical Physics).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto De Leo.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Leo, R., Maltsev, A.Y. Quasiperiodic Dynamics and Magnetoresistance in Normal Metals. Acta Appl Math 162, 47–61 (2019). https://doi.org/10.1007/s10440-018-00235-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-018-00235-z

Keywords

Navigation