Acta Applicandae Mathematicae

, Volume 155, Issue 1, pp 1–8 | Cite as

Best Approximation in Köthe–Bochner Spaces

  • Ion Chiţescu
  • Răzvan-Cornel Sfetcu


We give sufficient conditions for the best approximation of convex, bounded, closed and solid sets in Köthe–Bochner spaces and apply this result to sequence spaces.


Best approximation Köthe–Bochner spaces 

Mathematics Subject Classification (2010)

41A50 46A45 46B45 46E30 54C35 28A20 46B25 



The authors are very much indebted to the anonymous referee and to the editors for their most valuable comments and suggestions which improved the quality of our paper.


  1. 1.
    Barbu, V., Precupanu, T.: Convexity and Optimization in Banach Spaces, 4th edn. Springer, Berlin (2010) MATHGoogle Scholar
  2. 2.
    Benedek, A., Panzone, R.: The spaces \(L^{p}\) with mixed norms. Duke Math. J. 28, 301–324 (1961) MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Chiţescu, I.: Function Spaces. Ed. Şt. Encicl., Bucharest (1983) (in Romanian) MATHGoogle Scholar
  4. 4.
    Descloux, J.: Approximations in \(L^{p}\) and Chebyshev approximations. J. Soc. Ind. Appl. Math. 11, 1017–1026 (1963) MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Dieudonné, J.: Sur les espaces de Köthe. J. Anal. Math. 1, 81–115 (1951) CrossRefMATHGoogle Scholar
  6. 6.
    Dinculeanu, N.: Vector Measures. Veb Deutscher Verlag der Wissenschaften, Berlin (1966) MATHGoogle Scholar
  7. 7.
    Dunford, N., Schwartz, J.T.: Linear Operators. Part I. Interscience, New York (1957) MATHGoogle Scholar
  8. 8.
    Hudzik, H., Kaczmarek, R.: Monotonicity characteristic of Köthe–Bochner spaces. J. Math. Anal. Appl. 349, 459–468 (2009) MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Köthe, G.: Neubegründung der Theorie der vollkommenen Räume. Math. Nachr. 4, 70–80 (1951) MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Köthe, G., Toeplitz, O.: Lineare Räume mit unendlichvielen Koordinaten und Ringe unendlicher Matrizen. J. Crelle 171, 193–226 (1934) MathSciNetMATHGoogle Scholar
  11. 11.
    Kripke, B.: Best approximations with respect to nearby norms. Numer. Math. 6, 103–105 (1964) MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Kufner, A., John, O., Fucik, S.: Function Spaces. Academia, Prague (1977) MATHGoogle Scholar
  13. 13.
    Lin, P.-K.: Stability of some properties in Köthe–Bochner function spaces. In: Function Spaces, the Fifth Conference. Pure and Applied Math., vol. 213, pp. 347–357. Dekker, New York (2000) Google Scholar
  14. 14.
    Lin, P.-K.: Köthe–Bochner Function Spaces. Springer, Berlin (2004) CrossRefMATHGoogle Scholar
  15. 15.
    Luxemburg, W.A.J.: Banach function spaces. Thesis, Delft Institute of Technology, Assen, Netherlands (1955) Google Scholar
  16. 16.
    Luxemburg, W.A.J., Zaanen, A.C.: Notes on Banach function spaces. Indag. Math. Note I (1963)–Note XVI (1965) Google Scholar
  17. 17.
    Reich, S., Sabach, S.: A strong convergence theorem for a proximal-type algorithm in reflexive Banach spaces. J. Nonlinear Convex Anal. 10, 471–485 (2009) MathSciNetMATHGoogle Scholar
  18. 18.
    Rubins̆tein, G.: On an extremal problem in a normed linear space. Sib. Math. J. 6, 711–714 (1965) (in Russian) Google Scholar
  19. 19.
    Shintani, T., Ando, T.: Best approximants in \(L^{1}\)-space. Z. Wahrscheinlichkeitstheor. Verw. Geb. 33, 33–39 (1975/1976) Google Scholar
  20. 20.
    Singer, I.: Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces. Springer, Berlin (1970) CrossRefMATHGoogle Scholar
  21. 21.
    Zaanen, A.C.: Integration. North Holland, Amsterdam (1967) MATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.Faculty of Mathematics and Computer ScienceUniversity of BucharestBucharestRomania

Personalised recommendations