Acta Applicandae Mathematicae

, Volume 148, Issue 1, pp 71–102 | Cite as

The Stochastic Encounter-Mating Model

  • Onur Gün
  • Atilla Yilmaz


We propose a new model of permanent monogamous pair formation in zoological populations with multiple types of females and males. According to this model, animals randomly encounter members of the opposite sex at their so-called firing times to form temporary pairs which then become permanent if mating happens. Given the distributions of the firing times and the mating preferences upon encounter, we analyze the contingency table of permanent pair types in three cases: (i) definite mating upon encounter; (ii) Poisson firing times; and (iii) Bernoulli firing times. In the first case, the contingency table has a multiple hypergeometric distribution which implies panmixia. The other two cases generalize the encounter-mating models of Gimelfarb (Am. Nat. 131(6):865–884, 1988) who gives conditions that he conjectures to be sufficient for panmixia. We formulate adaptations of his conditions and prove that they not only characterize panmixia but also allow us to reduce the model to the first case by changing its underlying parameters. Finally, when there are only two types of females and males, we provide a full characterization of panmixia, homogamy and heterogamy.


Population dynamics Pair formation Encounter-mating Assortative mating Random mating Panmixia Homogamy Heterogamy Monogamy Mating preferences Mating pattern Contingency table Multiple hypergeometric distribution Simple point process Poisson process Bernoulli process 

Mathematics Subject Classification (2000)

92D25 60J28 60G55 



We are indebted to A. Courtiol for introducing us to Gimelfarb’s work on encounter-mating and for suggesting interesting problems. We also thank F. Rezakhanlou and P. Diaconis for valuable comments and discussions. O. Gün gratefully acknowledges support by DFG SPP Priority Programme 1590 “Probabilistic Structures in Evolution”. A. Yilmaz is supported in part by European Union FP7 Marie Curie Career Integration Grant no. 322078.


  1. 1.
    Alpern, S., Reyniers, D.: Strategic mating with homotypic preferences. J. Theor. Biol. 198(1), 71–88 (1999) CrossRefGoogle Scholar
  2. 2.
    Alpern, S., Reyniers, D.: Strategic mating with common preferences. J. Theor. Biol. 237(4), 337–354 (2005) MathSciNetCrossRefGoogle Scholar
  3. 3.
    Andersson, M.: Sexual Selection, 2nd edn. Monographs in Behavior and Ecology, vol. 27. Princeton University Press, Princeton (1994) Google Scholar
  4. 4.
    Bergstrom, C.T., Real, L.A.: Towards a theory of mutual mate choice: Lessons from two-sided matching. Evol. Ecol. Res. 2, 493–508 (2000) Google Scholar
  5. 5.
    Courtiol, A., Pettay, J.E., Jokela, M., Rotkirch, A., Lummaa, V.: Natural and sexual selection in a monogamous historical human population. Proc. Natl. Acad. Sci. 109(21), 8044–8049 (2012) CrossRefGoogle Scholar
  6. 6.
    Davis, C.S.: Statistical Methods for the Analysis of Repeated Measurements. Springer Texts in Statistics. Springer, New York (2002) zbMATHGoogle Scholar
  7. 7.
    Dietz, K., Hadeler, K.P.: Epidemiological models for sexually transmitted diseases. J. Math. Biol. 26(1), 1–25 (1988) MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Etheridge, A.M., Lemaire, S.: Diffusion approximation of a multilocus model with assortative mating. Electron. J. Probab. 16(78), 2122–2181 (2011) MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Etienne, L., Rousset, F., Godelle, B., Courtiol, A.: How choosy should I be? The relative searching time predicts evolution of choosiness under direct sexual selection. Proc. R. Soc. Lond. B, Biol. Sci. 281(1785), 20140190 (2014) CrossRefGoogle Scholar
  10. 10.
    Ewens, W.J.: Mathematical Population Genetics. I. Theoretical Introduction, 2nd edn. Interdisciplinary Applied Mathematics, vol. 27. Springer, New York (2004) CrossRefzbMATHGoogle Scholar
  11. 11.
    Gillespie, J.H.: Population Genetics. A Concise Guide. Johns Hopkins University Press, Baltimore (1998) Google Scholar
  12. 12.
    Gimelfarb, A.: Processes of pair formation leading to assortative mating in biological populations: Dynamic interaction model. Theor. Popul. Biol. 34(1), 1–23 (1988) MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Gimelfarb, A.: Processes of pair formation leading to assortative mating in biological populations: Encounter-mating model. Am. Nat. 131(6), 865–884 (1988) CrossRefzbMATHGoogle Scholar
  14. 14.
    Gün, O., Yilmaz, A.: Fluid limit for the Poisson encounter-mating model. Preprint, available at: arXiv:1411.7220 [math.PR] (2014)
  15. 15.
    Hadeler, K.P.: Pair formation. J. Math. Biol. 64(4), 613–645 (2012) MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Higgs, P.G., Derrida, B.: Genetic distance and species formation in evolving populations. J. Mol. Evol. 35(5), 454–465 (1992) CrossRefGoogle Scholar
  17. 17.
    Jiang, Y., Bolnick, D.I., Kirkpatrick, M.: Assortative mating in animals. Am. Nat. 181(6), E125–E138 (2013) CrossRefGoogle Scholar
  18. 18.
    Kirkpatrick, M.: Sexual selection and the evolution of female choice. Evolution 36(1), 1–12 (1982) CrossRefGoogle Scholar
  19. 19.
    Lande, R.: Models of speciation by sexual selection on polygenic traits. Proc. Natl. Acad. Sci. USA 78(6, part 2) 3721–3725 (1981) MathSciNetCrossRefGoogle Scholar
  20. 20.
    Mode, C.J.: Some multi-dimensional birth and death processes and their applications in population genetics. Biometrics 18(4), 543–567 (1962) CrossRefzbMATHGoogle Scholar
  21. 21.
    Mosteller, F.: Association and estimation in contingency tables. J. Am. Stat. Assoc. 63, 1–28 (1968) MathSciNetGoogle Scholar
  22. 22.
    Romney, A.K.: Measuring endogamy. In: Kay, P. (ed.) Explorations in Mathematical Anthropology, pp. 191–213. MIT Press, Cambridge (1971) Google Scholar
  23. 23.
    Taylor, C.E.: Differences in mating propensities: Some models for examining the genetic consequences. Behav. Genet. 5(4), 381–393 (1975) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Weierstrass InstituteBerlinGermany
  2. 2.Department of MathematicsKoç UniversityIstanbulTurkey

Personalised recommendations