Skip to main content
Log in

Planar Canards with Transcritical Intersections

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

We review essential techniques in the study of families of periodic orbits of slow-fast systems in the plane. The techniques are demonstrated by treating orbits passing through unfoldings of transcritical intersections of curves of singular points in the most generic setting. We show that such transcritical intersections can generate canard type orbits. The stability of limit cycles of canard type containing that pass near transcritical intersections is examined by means of the slow divergence integral.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Benoit, E.: Équations différentielles: relation entrée–sortie. C. R. Acad. Sci. Paris Sér. I Math. 293(5), 293–296 (1981)

    MATH  MathSciNet  Google Scholar 

  2. Benoît, É., Callot, J.L., Diener, F., Diener, M.: Chasse au canard. I–IV. Collect. Math. 32(1–2), 37–119 (1981)

    MATH  MathSciNet  Google Scholar 

  3. Canalis-Durand, M.: Formal expansion of van der Pol equation canard solutions are Gevrey. In: Dynamic Bifurcations (Luminy, 1990). Lecture Notes in Math., vol. 1493, pp. 29–39. Springer, Berlin (1991)

    Chapter  Google Scholar 

  4. Canalis-Durand, M., Ramis, J.P., Schäfke, R., Sibuya, Y.: Gevrey solutions of singularly perturbed differential equations. J. Reine Angew. Math. 518, 95–129 (2000)

    MATH  MathSciNet  Google Scholar 

  5. De Maesschalck, P.: Gevrey properties of real planar singularly perturbed systems. J. Differ. Equ. 238(2), 338–365 (2007)

    Article  MATH  Google Scholar 

  6. De Maesschalck, P., Desroches, M.: Numerical continuation techniques for planar slow-fast systems. SIAM J. Appl. Dyn. Syst. 12(3), 1159–1180 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  7. De Maesschalck, P., Dumortier, F.: Time analysis and entry-exit relation near planar turning points. J. Differ. Equ. 215(2), 225–267 (2005)

    Article  MATH  Google Scholar 

  8. De Maesschalck, P., Dumortier, F.: Canard solutions at non-generic turning points. Trans. Am. Math. Soc. 358(5), 2291–2334 (2006) (electronic)

    Article  MATH  Google Scholar 

  9. De Maesschalck, P., Dumortier, F.: Bifurcations of multiple relaxation oscillations in polynomial Liénard equations. Proc. Am. Math. Soc. 139(6), 2073–2085 (2011)

    Article  MATH  Google Scholar 

  10. De Maesschalck, P., Dumortier, F., Roussarie, R.: Transitory canard cycles. In preparation

  11. De Maesschalck, P., Dumortier, F., Roussarie, R.: Cyclicity of common slow-fast cycles. Indag. Math. 22(3-4), 165–206 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  12. De Maesschalck, P., Huzak, R.: Slow divergence integrals in classical liénard equations near centers. J. Dyn. Differ. Equ. (2014), 9 pp. http://dx.doi.org/10.1007/s10884-014-9358-1. doi:10.1007/s10884-014-9358-1,

    Google Scholar 

  13. Dumortier, F.: Slow divergence integral and balanced canard solutions. Qual. Theory Dyn. Syst. 10(1), 65–85 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  14. Dumortier, F., Roussarie, R.: Canard cycles and center manifolds. Mem. Am. Math. Soc. 121(577), x+100 (1996). With an appendix by Cheng Zhi Li

    MathSciNet  Google Scholar 

  15. Dumortier, F., Roussarie, R.: Bifurcation of relaxation oscillations in dimension two. Discrete Contin. Dyn. Syst. 19(4), 631–674 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Dumortier, F., Roussarie, R.: Birth of canard cycles. Discrete Contin. Dyn. Syst. Ser. S 2(4), 723–781 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  17. Eckhaus, W.: Asymptotic Analysis of Singular Perturbations. Studies in Mathematics and Its Applications, vol. 9. North-Holland Publishing Co., Amsterdam-New York (1979)

    MATH  Google Scholar 

  18. Eckhaus, W.: Relaxation oscillations including a standard chase on French ducks. In: Asymptotic Analysis, II. Lecture Notes in Math., vol. 985, pp. 449–494. Springer, Berlin (1983)

    Chapter  Google Scholar 

  19. Fenichel, N.: Geometric singular perturbation theory for ordinary differential equations. J. Differ. Equ. 31(1), 53–98 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  20. Françoise, J.P., Piquet, C., Vidal, A.: Enhanced delay to bifurcation. Bull. Belg. Math. Soc. Simon Stevin 15(5), 825–831 (2008). http://projecteuclid.org/euclid.bbms/1228486410

    MATH  MathSciNet  Google Scholar 

  21. van Gils, S., Krupa, M., Szmolyan, P.: Asymptotic expansions using blow-up. Z. Angew. Math. Phys. 56(3), 369–397 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  22. Grasman, J.: Asymptotic Methods for Relaxation Oscillations and Applications. Applied Mathematical Sciences, vol. 63. Springer, New York (1987)

    MATH  Google Scholar 

  23. Huzak, R., Maesschalck, P., Dumortier, F.: Primary birth of canard cycles in slow-fast codimension 3 elliptic bifurcations. Commun. Pure Appl. Anal. 13(6), 2641–2673 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  24. Kevorkian, J., Cole, J.D.: Multiple Scale and Singular Perturbation Methods. Applied Mathematical Sciences, vol. 114. Springer, New York (1996)

    MATH  Google Scholar 

  25. Krupa, M., Szmolyan, P.: Extending slow manifolds near transcritical and pitchfork singularities. Nonlinearity 14(6), 1473–1491 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  26. Krupa, M., Szmolyan, P.: Relaxation oscillation and canard explosion. J. Differ. Equ. 174(2), 312–368 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  27. Kuznetsov, Y.A., Muratori, S., Rinaldi, S.: Homoclinic bifurcations in slow-fast second order systems. Nonlinear Anal. 25(7), 747–762 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  28. Li, C., Zhu, H.: Canard cycles for predator-prey systems with Holling types of functional response. J. Differ. Equ. 254(2), 879–910 (2013)

    Article  MATH  Google Scholar 

  29. Mamouhdi, L., Roussarie, R.: Canard cycles of finite codimension with two breaking parameters. Qual. Theory Dyn. Syst. 11(1), 167–198 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  30. Mishchenko, E.F., Kolesov, Y.S., Kolesov, A.Y., Rozov, N.K.: Asymptotic Methods in Singularly Perturbed Systems. Monographs in Contemporary Mathematics. Consultants Bureau, New York (1994). Translated from the Russian by Irene Aleksanova

    Book  MATH  Google Scholar 

  31. Panazzolo, D.: Desingularization of nilpotent singularities in families of planar vector fields. Mem. Am. Math. Soc. 158(753), viii+108 (2002)

    MathSciNet  Google Scholar 

  32. Rosenzweig, M.L., MacArthur, R.H.: Graphical representation and stability conditions of predator-prey interactions. Am. Nat. 47(895), 209–223 (1963)

    Article  Google Scholar 

  33. Schecter, S.: Persistent unstable equilibria and closed orbits of a singularly perturbed equation. J. Differ. Equ. 60(1), 131–141 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  34. Shen, J., Han, M.: Bifurcations of canard limit cycles in several singularly perturbed generalized polynomial Liénard systems. Discrete Contin. Dyn. Syst. 33(7), 3085–3108 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  35. Verhulst, F.: Methods and Applications of Singular Perturbations. Boundary Layers and Multiple Timescale Dynamics. Texts in Applied Mathematics, vol. 50. Springer, New York (2005)

    Book  MATH  Google Scholar 

  36. Wasow, W.R.: Singular perturbation methods for nonlinear oscillations. In: Proceedings of the Symposium on Nonlinear Circuit Analysis, pp. 75–98. Polytechnic Institute of Brooklyn, New York (1953)

    Google Scholar 

Download references

Acknowledgements

The author thanks the anonymous reviewers for their many useful remarks and suggestions. The author acknowledges support from FWO Vlaanderen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. De Maesschalck.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Maesschalck, P. Planar Canards with Transcritical Intersections. Acta Appl Math 137, 159–184 (2015). https://doi.org/10.1007/s10440-014-9994-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-014-9994-9

Keywords

Navigation