Acta Applicandae Mathematicae

, Volume 137, Issue 1, pp 17–39

Near-Horizon Celestial Phenomena, a Study in Geometric Optics


DOI: 10.1007/s10440-014-9989-6

Cite this article as:
Broer, H.W. Acta Appl Math (2015) 137: 17. doi:10.1007/s10440-014-9989-6


Near horizon phenomena, like blank strips in the setting sun or Fata Morganas, can be largely understood in terms of geometric optics. Here the existence of a warm layer above the observer in which light rays can be either refracted of reflected, already suffices to explain many of the phenomena; a reasoning which goes back to Alfred Wegener in the 1920’s. We review this theory, where first the atmosphere is divided into discrete, optically homogeneous layers, and where later the atmosphere is considered as a continuous, isotropic medium. Thus the theory gets embedded in differential geometry, where light rays are geodesics. A simplifying assumption is that the refraction index only depends on the elevation above the surface of the earth. Here a connection is made with the geodesic problem on a surface of revolution. In the background of this we touch the variational calculus as this runs from Bernoulli to Hamilton, all the way maintaining a completely anachronistic viewpoint.


Geometric optics Differential geometry Nonlinear dynamics 

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.GroningenThe Netherlands

Personalised recommendations