Skip to main content
Log in

Analysis 1-recovery with Frames and Gaussian Measurements

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

This paper provides novel results for the recovery of signals from undersampled measurements based on analysis 1-minimization, when the analysis operator is given by a frame. We both provide so-called uniform and nonuniform recovery guarantees for cosparse (analysis-sparse) signals using Gaussian random measurement matrices. The nonuniform result relies on a recovery condition via tangent cones and the uniform recovery guarantee is based on an analysis version of the null space property. Examining these conditions for Gaussian random matrices leads to precise bounds on the number of measurements required for successful recovery. In the special case of standard sparsity, our result improves a bound due to Rudelson and Vershynin concerning the exact reconstruction of sparse signals from Gaussian measurements with respect to the constant and extends it to stability under passing to approximately sparse signals and to robustness under noise on the measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Aldroubi, A., Chen, X., Powell, A.M.: Perturbations of measurement matrices and dictionaries in compressed sensing. Appl. Comput. Harmon. Anal. 33(2), 282–291 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  2. Amelunxen, D., Lotz, M., McCoy, M.B., Tropp, J.A.: Living on the edge: A geometric theory of phase transitions in convex optimization. Inform. Inference (2014, to appear). doi:10.1093/imaiai/iau005

  3. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  4. Cai, J.-F., Osher, S., Shen, Z.: Split Bregman methods and frame based image restoration. Multiscale Model. Simul. 8(2), 337–369 (2009/10)

    Article  MATH  MathSciNet  Google Scholar 

  5. Candès, E.J., Donoho, D.L.: New tight frames of curvelets and optimal representations of objects with piecewise C 2 singularities. Commun. Pure Appl. Math. 57(2), 219–266 (2004)

    Article  MATH  Google Scholar 

  6. Candès, E.J., Tao, T., Romberg, J.K.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)

    Article  MATH  Google Scholar 

  7. Candès, E.J., Eldar, Y.C., Needell, D., Randall, P.: Compressed sensing with coherent and redundant dictionaries. Appl. Comput. Harmon. Anal. 31(1), 59–73 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chan, T., Shen, J.: Image Processing and Analysis: Variational, PDE, Wavelet, and Stochastic Methods. SIAM, Philadelphia (2005)

    Book  Google Scholar 

  9. Chandrasekaran, V., Recht, B., Parrilo, P.A., Willsky, A.S.: The convex geometry of linear inverse problems. Found. Comput. Math. 12(6), 805–849 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM J. Sci. Comput. 20(1), 33–61 (1998)

    Article  MathSciNet  Google Scholar 

  11. Cohen, A., Dahmen, W., DeVore, R.A.: Compressed sensing and best k-term approximation. J. Am. Math. Soc. 22(1), 211–231 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Donoho, D.L., Tanner, J.: Counting faces of randomly-projected polytopes when the projection radically lowers dimension. J. Am. Math. Soc. 22(1), 1–53 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Donoho, D.L., Tanner, J.: Observed universality of phase transitions in high-dimensional geometry, with implications for modern data analysis and signal processing. Philos. Trans. R. Soc., Math. Phys. Eng. Sci. 367(1906), 4273–4293 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. Elad, M., Milanfar, P., Rubinstein, R.: Analysis versus synthesis in signal priors. Inverse Probl. 23(3), 947–968 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Foucart, S.: Stability and robustness of 1-minimizations with Weibull matrices and redundant dictionaries. Linear Algebra Appl. 441, 4–21 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  17. Foucart, S., Rauhut, H.: A Mathematical Introduction to Compressive Sensing. Appl. Numer. Harmon. Anal. Birkhäuser, Boston (2013)

    Book  MATH  Google Scholar 

  18. Giryes, R., Nam, S., Elad, M., Gribonval, R., Davies, M.E.: Greedy-like algorithms for the cosparse analysis model. Linear Algebra Appl. 441, 22–60 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  19. Gordon, Y.: On Milman’s inequality and random subspaces which escape through a mesh in R n. In: Geometric Aspects of Functional Analysis (1986/87). Lecture Notes in Math., vol. 1317, pp. 84–106. Springer, Berlin (1988)

    Chapter  Google Scholar 

  20. Gribonval, R., Nielsen, M.: Sparse representations in unions of bases. IEEE Trans. Inf. Theory 49(12), 3320–3325 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  21. Gröchenig, K.: Foundations of Time-Frequency Analysis. Appl. Numer. Harmon. Anal. Birkhäuser, Boston (2001)

    Book  MATH  Google Scholar 

  22. Kabanava, M., Rauhut, H., Zhang, H.: Robust analysis 1-recovery from Gaussian measurements and total variation minimization. arXiv:1407.7402

  23. Ledoux, M.: The Concentration of Measure Phenomenon. AMS, Providence (2001)

    MATH  Google Scholar 

  24. Ledoux, M., Talagrand, M.: Probability in Banach Spaces. Springer, Berlin, Heidelberg, NewYork (1991)

    Book  MATH  Google Scholar 

  25. Liu, Y., Mi, T., Li, Sh.: Compressed sensing with general frames via optimal-dual-based 1-analysis. IEEE Trans. Inf. Theory 58(7), 4201–4214 (2012)

    Article  MathSciNet  Google Scholar 

  26. Mallat, S.: A Wavelet Tour of Signal Processing: The Sparse Way. Academic Press, San Diego (2008)

    Google Scholar 

  27. Massart, P.: Concentration Inequalities and Model Selection. Lecture Notes in Mathematics, vol. 1896. Springer, Berlin (2007)

    MATH  Google Scholar 

  28. Mendelson, S., Pajor, A., Tomczak-Jaegermann, N.: Reconstruction and subgaussian operators in asymptotic geometric analysis. Geom. Funct. Anal. 17(4), 1248–1282 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  29. Nam, S., Davies, M.E., Elad, M., Gribonval, R.: The cosparse analysis model and algorithms. Appl. Comput. Harmon. Anal. 34(1), 30–56 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  30. Needell, D., Ward, R.: Stable image reconstruction using total variation minimization. arXiv:1202.6429

  31. Rao, N., Recht, B., Nowak, R.: Tight measurement bounds for exact recovery of structured sparse signals. In: Proceedings of AISTATS (2012)

    Google Scholar 

  32. Ron, A., Shen, Z.: Affine systems in L 2(R d): the analysis of the analysis operator. J. Funct. Anal. 148(2), 408–447 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  33. Rudelson, M., Vershynin, R.: On sparse reconstruction from Fourier and Gaussian measurements. Commun. Pure Appl. Math. 61(8), 1025–1045 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  34. Selesnick, I., Figueiredo, M.: Signal restoration with overcomplete wavelet transforms: comparison of analysis and synthesis priors. Proc. SPIE 7446, 74460D (2009)

    Article  Google Scholar 

  35. Vaiter, S., Peyré, G., Dossal, Ch., Fadili, J.: Robust sparse analysis regularization. IEEE Trans. Inf. Theory 59(4), 2001–2016 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

M. Kabanava and H. Rauhut acknowledge support by the Hausdorff Center for Mathematics, University of Bonn, and by the European Research Council through the grant StG 258926.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryia Kabanava.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kabanava, M., Rauhut, H. Analysis 1-recovery with Frames and Gaussian Measurements. Acta Appl Math 140, 173–195 (2015). https://doi.org/10.1007/s10440-014-9984-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-014-9984-y

Keywords

Mathematics Subject Classification (2010)

Navigation