Skip to main content
Log in

Stability of a Continuous Reaction-Diffusion Cournot-Kopel Duopoly Game Model

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

In order to take into account the territory in which the outputs are in the market and the time-depending firms’ strategies, the discrete Cournot duopoly game (with adaptive expectations, modeled by Kopel) is generalized through a non autonomous reaction-diffusion binary system of PDEs, with self and cross diffusion terms. Linear and nonlinear asymptotic L 2-stability, via the Liapunov Direct Methot and a nonautonomous energy functional, are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. It has been considered \(\varOmega\subset \mathbb{R}^{3}\) also for taking into account territories containing mountains.

  2. The cross-diffusion is introduced in order to take into account the influence of an output on the diffusion of the other output, also via the diffusion terms.

  3. The value of c 2 can be easily evaluated, by analyzing the time derivative of \(h_{1}(t)= \frac{2\mu_{2}\sqrt{\eta_{2}}}{\eta _{1}}\) and of \(h_{2}(t)= \frac{2\mu_{1}\sqrt{\eta_{1}}}{\eta _{2}}\). Precisely,

    $$\dot{h}_1(t)= \frac{1}{\eta_2^2(t)}\frac{\mu_2\vert 1-2\bar{u}\vert\mu_1 \vert1-2\bar{v}\vert }{(b_2+c_2t)^2(b_1+c_1t)^2} \bigl[c_2c_1(2a_1\bar{\alpha}_2-a_2 \bar{\alpha}_1) t - c_2a_2( \bar{\alpha}_1 b_1+a_1)+2 c_1a_1( \bar{\alpha}_2 b_2+a_2)\bigr] $$

    and

    $$\dot{h}_2(t)= \frac{1}{\eta_1^2(t)}\frac{\mu_2\vert 1-2\bar{u}\vert\mu_1 \vert 1-2\bar{v}\vert}{(b_2+c_2t)^2(b_1+c_1t)^2}\bigl[ c_2c_1(2a_2\bar{\alpha}_1-a_1 \bar{\alpha}_2) t - c_1a_1( \bar{\alpha}_2 b_2+a_2)+2 c_2a_2( \bar{\alpha}_1 b_1+a_1) \bigr]. $$

References

  1. Kopel, M.: Simple and complex adjustment dynamics in Cournot duopoly models. Chaos Solitons Fractals 12, 2031–2048 (1996)

    Article  MathSciNet  Google Scholar 

  2. Bischi, G.I., Kopel, M.: Equilibrium selection in a nonlinear duopoly game with adaptive expectations. J. Econ. Behav. Organ. 46(1), 73–100 (2001)

    Article  Google Scholar 

  3. Agiza, H.N.: On the analysis of stability, bifurcation, chaos, and chaos control of Kopel map. Chaos Solitons Fractals 10, 1909–1916 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Agiza, H.N., Elsadany, A.A., Kopel, M.: Nonlinear dynamics in the Cournot duopoly game with heterogeneous players. Physica A 320, 512–524 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bischi, G.I., Gardini, L., Kopel, M.: Noninvertible maps and Complex basin boundaries in dynamic economic models with coexisting attractors. Chaos Complex. Lett. 2(1), 43–74 (2006)

    MATH  Google Scholar 

  6. Torcicollo, I.: On the dynamics of a non-linear Duopoly game model. Int. J. Non-Linear Mech. 57, 799–805 (2013)

    Article  Google Scholar 

  7. Rionero, S.: On the stability of nonautonomous binary dynamical systems of partial differential equations. Atti Accad. Pelorit. Pericol. 91(1), A17 (2013)

    MathSciNet  Google Scholar 

  8. Rionero, S.: Stability-instability criteria for non-autonomous binary systems. Rend. Lincei Mat. Appl. 20, 347–367 (2009)

    MATH  MathSciNet  Google Scholar 

  9. Rionero, S.: On the nonlinear stability of nonautonomous binary systems. Nonlinear Anal. 75, 2338–2348 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  10. Capone, F., De Luca, R., Rionero, S.: On the stability of nonautonomous perturbed Lotka-Volterra models. Appl. Math. Comput. 219(12), 6868–6881 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  11. De Luca, R.: On the long-time dynamics of nonautonomous predator-prey models with mutual interference. Ric. Mat. 61(2), 275–290 (2012)

    Article  MathSciNet  Google Scholar 

  12. Rionero, S.: A nonlinear L 2-stability analysis for two species dynamics with dispersal. Math. Biosci. Eng. 3(1), 189–204 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Rionero, S.: A rigorous reduction of the L 2-stability of the solutions to a nonlinear binary reaction-diffusion system of PDE’s to the stability of the solutions to a linear system of ODE’s. J. Math. Anal. Appl. 319, 377–397 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. Rionero, S.: L 2-stability of solutions to a nonlinear binary reaction-diffusion system of P.D.Es. Rend. Mat. Accad. Lincei, Ser. 9 16, 227–238 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. Rionero, S.: L 2-energy stability via new dependent variables for circumventing strongly nonlinear reaction terms. Nonlinear Anal. 70, 2530–2541 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Flavin, J.N., Rionero, S.: Qualitative Estimates for Partial Differential Equations: An Introduction. CRC Press, Boca Raton (1996)

    MATH  Google Scholar 

  17. Flavin, J.N., Rionero, S.: Cross-diffusion influence on the nonlinear L 2-stability analysis for a Lotka-Volterra reaction-diffusion system of PDEs. JMA J. Appl. Math. 72, 540–555 (2007)

    MATH  MathSciNet  Google Scholar 

  18. Rionero, S.: Long time behavior of three competing species and mutualistic communities. In: Asymptotic Methods in Nonlinear Wave Phenomena, pp. 171–186. World Scientific, Singapore (2006)

    Google Scholar 

  19. De Angelis, M.: On a model of superconductivity and biology. Adv. Appl. Math. Sci. 7(1), 41–50 (2010)

    MATH  MathSciNet  Google Scholar 

  20. De Angelis, M.: Asymptotic estimates related to an integro differential equation. Nonlinear Dyn. Syst. Theory 13(3), 217–228 (2013)

    MATH  MathSciNet  Google Scholar 

  21. Torcicollo, I.: Su alcuni problemi di diffusione non lineare. Boll. Unione Mat. Ital., A 3(3), 407–410 (2000)

    MATH  Google Scholar 

  22. Rionero, S., Torcicollo, I.: On an ill-posed problem in nonlinear heat conduction. Transp. Theory Stat. Phys. 29(1&2), 173–186 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  23. Capone, F., De Luca, R., Torcicollo, I.: Longtime behavior of vertical throughflows for binary mixtures in porous layers. Int. J. Non-Linear Mech. 52, 1–7 (2013)

    Article  Google Scholar 

  24. Capone, F., De Cataldis, V., De Luca, R., Torcicollo, I.: On the stability of vertical constant throughflows for binary mixtures in porous layers. Int. J. Non-Linear Mech. 59, 1–8 (2014)

    Article  Google Scholar 

  25. Torcicollo, I., Vitiello, M.: A note on the nonlinear pointwise stability for the equation u t F(u) in the exterior of a sphere. Rend. Accad. Sci. Fis. Mat. Napoli LXX, 111–117 (2003)

    MathSciNet  Google Scholar 

  26. Torcicollo, I., Vitiello, M.: On the nonlinear diffusion in the exterior of a sphere. Rend. Accad. Sci. Fis. Mat., Napoli LXVIII, 139 (2001)

    MathSciNet  Google Scholar 

  27. Rionero, S., Torcicollo, I.: On the pointwise continuous dependence of an approximate solution of a nonlinear heat conduction ill-posed problem. In: Rend. Accad. Sci. Fis. Mat., Napoli, LXVII, Ser. IV, pp. 169–179 (2000)

    Google Scholar 

  28. Torcicollo, I., Vitiello, M.: On the nonlinear diffusion in the exterior of a sphere. In: Monaco, R., Bianchi, M.P., Rionero, S. (eds.) Proceedings 11th International Conference on Wave and Stability in Continuous Media, Porto Ercole, Italy, pp. 563–568 (2002)

    Google Scholar 

  29. Rionero, S., Torcicollo, I.: On a nonlinear heat conduction problem. In: O’Donoghue, F.L. (ed.) Proceedings of STAMM 2000, pp. 178–184 (2000)

    Google Scholar 

  30. Capone, F., Gentile, M., Hill, A.A.: Penetrative convection in anisotropic porous media with variable permeability. Acta Mech. 216, 49–58 (2011)

    Article  MATH  Google Scholar 

  31. Rionero, S.: Soret effects on the onset of convection in rotating porous layers via the “auxiliary system method”. Ric. Mat. 62(2), 183–208 (2013)

    Article  MathSciNet  Google Scholar 

  32. Capone, F.: On the dynamics of predator-prey models with the Beddington-De Angelis functional response, under Robin boundary conditions. Ric. Mat. 57, 137–157 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  33. Merkin, D.R.: Introduction to the Theory of Stability. Springer Texts in Appl. Math., vol. 24 (1997)

    Google Scholar 

  34. Cantrell, R.S., Cosner, C.: Spatial Ecology via Reaction-Diffusion Equations. Wiley, Chichester (2003)

    MATH  Google Scholar 

Download references

Acknowledgements

This paper has been performed under the auspices of the G.N.F.M. of I.N.d.A.M.

I. Torcicollo acknowledges the Project G.N.F.M. Giovani 2013 “Moti fluidi di miscele in strati porosi, immersi in campi termici non isotermi”. S. Rionero acknowledges the Leverhulm Trust “Tipping points: mathematics, metaphors and meanings”. The accuracy of the referees is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabella Torcicollo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rionero, S., Torcicollo, I. Stability of a Continuous Reaction-Diffusion Cournot-Kopel Duopoly Game Model. Acta Appl Math 132, 505–513 (2014). https://doi.org/10.1007/s10440-014-9932-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-014-9932-x

Keywords

Navigation