Acta Applicandae Mathematicae

, Volume 133, Issue 1, pp 187–234 | Cite as

A Constructive Study of the Module Structure of Rings of Partial Differential Operators

Article

Abstract

The purpose of this paper is to develop constructive versions of Stafford’s theorems on the module structure of Weyl algebras An(k) (i.e., the rings of partial differential operators with polynomial coefficients) over a base field k of characteristic zero. More generally, based on results of Stafford and Coutinho-Holland, we develop constructive versions of Stafford’s theorems for very simple domains D. The algorithmization is based on the fact that certain inhomogeneous quadratic equations admit solutions in a very simple domain. We show how to explicitly compute a unimodular element of a finitely generated left D-module of rank at least two. This result is used to constructively decompose any finitely generated left D-module into a direct sum of a free left D-module and a left D-module of rank at most one. If the latter is torsion-free, then we explicitly show that it is isomorphic to a left ideal of D which can be generated by two elements. Then, we give an algorithm which reduces the number of generators of a finitely presented left D-module with module of relations of rank at least two. In particular, any finitely generated torsion left D-module can be generated by two elements and is the homomorphic image of a projective ideal whose construction is explicitly given. Moreover, a non-torsion but non-free left D-module of rank r can be generated by r+1 elements but no fewer. These results are implemented in the Stafford package for D=An(k) and their system-theoretical interpretations are given within a D-module approach. Finally, we prove that the above results also hold for the ring of ordinary differential operators with either formal power series or locally convergent power series coefficients and, using a result of Caro-Levcovitz, also for the ring of partial differential operators with coefficients in the field of fractions of the ring of formal power series or of the ring of locally convergent power series.

Keywords

Weyl algebras Stafford’s theorems Linear systems of partial differential equations D-modules Mathematical systems theory Constructive algebra Symbolic computation 

References

  1. 1.
    Barakat, M., Robertz, D.: homalg: a meta-package for homological algebra. J. Algebra Appl. 7, 299–317 (2008) CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Barakat, M., Lange-Hegermann, M.: An axiomatic setup for algorithmic homological algebra and an alternative approach to localization. J. Algebra Appl. 10, 269–293 (2011) CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Barakat, M., Bremer, B.: Higher extension modules and the Yoneda product. Preprint arXiv:0802.3179 (http://arxiv.org/abs/0802.3179), submitted for publication (2008)
  4. 4.
    Barakat, M.: Spectral filtrations via generalized morphisms. Preprint arXiv:0904.0240 (http://arxiv.org/abs/0904.0240), submitted for publication (2009)
  5. 5.
    Bass, H.: Algebraic K-Theory. Benjamin, Elmsford (1968) Google Scholar
  6. 6.
    Björk, J.E.: Rings of Differential Operators. North Holland, Amsterdam (1979) MATHGoogle Scholar
  7. 7.
    Boudellioua, M.S., Quadrat, A.: Serre’s reduction of linear functional systems. Math. Comput. Sci. 4, 289–312 (2010) CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Byun, L.H.: A note on the module structure of Weyl algebras and simple noetherian rings. Commun. Algebra 21, 991–998 (1993) CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Caro, N., Levcovitz, D.: On a theorem of Stafford. Cad. Math. 11, 63–70 (2010) Google Scholar
  10. 10.
    Churchill, R.C., Kovacic, J.J.: Cyclic vectors. In: Proceedings of Differential Algebra and Related Topics, Rutgers University, Newark, 2–3 November 2002 Google Scholar
  11. 11.
    Chyzak, F., Quadrat, A., Robertz, D.: Effective algorithms for parametrizing linear control systems over Ore algebras. Appl. Algebra Eng. Commun. Comput. 16, 319–376 (2005) CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Chyzak, F., Quadrat, A., Robertz, D.: OreModules: a symbolic package for the study of multidimensional linear systems. In: Chiasson, J., Loiseau, J.-J. (eds.) Applications of Time-Delay Systems. Lecture Notes in Control and Inform., vol. 352, pp. 233–264. Springer, Berlin (2007). OreModules project. http://wwwb.math.rwth-aachen.de/OreModules CrossRefGoogle Scholar
  13. 13.
    Cluzeau, T., Quadrat, A.: Factoring and decomposing a class of linear functional systems. Linear Algebra Appl. 428, 324–381 (2008) CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Cluzeau, T., Quadrat, A.: OreMorphisms: a homological algebraic package for factoring and decomposing linear functional systems. In: Loiseau, J.-J., Michiels, W., Niculescu, S.-I., Sipahi, R. (eds.) Topics in Time-Delay Systems: Analysis, Algorithms and Control. Lecture Notes in Control and Inform., vol. 388, pp. 179–196. Springer, Berlin (2009). OreMorphisms project. http://pages.saclay.inria.fr/alban.quadrat//OreMorphisms/index.html CrossRefGoogle Scholar
  15. 15.
    Cluzeau, T., Quadrat, A.: Serre’s reduction of linear partial differential systems with holonomic adjoints. J. Symb. Comput. 47, 1192–1213 (2012) CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Cluzeau, T., Quadrat, A.: A constructive version of Fitting’s theorem on isomorphisms and equivalences of linear systems. In: Proceedings of NDS’11, Poitiers, France (2011) Google Scholar
  17. 17.
    Coquand, T., Lombardi, H., Quitté, C.: Generating non-Noetherian modules constructively. Manuscr. Math. 115, 513–520 (2004) CrossRefMATHGoogle Scholar
  18. 18.
    Coutinho, S.C., Holland, M.P.: Module structure of rings of differential operators. Proc. Lond. Math. Soc. 57, 417–432 (1988) CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Eisenbud, D.: Commutative Algebra with a View Toward Algebraic Geometry. Graduate Texts in Mathematics, vol. 150. Springer, Berlin (1995) MATHGoogle Scholar
  20. 20.
    Gago-Vargas, J.: Bases for projective modules in A n(k). J. Symb. Comput. 36, 845–853 (2003) CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Gallego, C., Lezama, O.: Gröbner bases for ideals of σ-PBW extensions. Commun. Algebra 39, 50–75 (2011) CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Hillebrand, A., Schmale, W.: Towards an effective version of a theorem of Stafford. J. Symb. Comput. 32, 699–716 (2001) CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Kalman, R.E., Falb, P.L., Arbib, M.A.: Topics in Mathematical System Theory. McGraw-Hill, New York (1969) MATHGoogle Scholar
  24. 24.
    Kashiwara, M.: Algebraic study of systems of partial differential equations. Master Thesis. Tokyo Univ., 1970. Mémoires de la Société Mathématiques de France 63 (1995) (English translation) Google Scholar
  25. 25.
    Lam, T.Y.: Lectures on Modules and Rings. Graduate Texts in Mathematics, vol. 189. Springer, Berlin (1999) MATHGoogle Scholar
  26. 26.
    Leykin, A.: Algorithmic proofs of two theorems of Stafford. J. Symb. Comput. 38, 1535–1550 (2004) CrossRefMathSciNetGoogle Scholar
  27. 27.
    Leykin, A., Tsai, H.: Dmodules—algorithms for D-modules. Macaulay2 package. http://www.math.uiuc.edu/Macaulay2/
  28. 28.
    Lombardi, H., Quitté, C.: Algèbre Commutative. Calvage & Mounet, Paris (2011) MATHGoogle Scholar
  29. 29.
    Maisonobe, P., Sabbah, C.: \({\mathcal{D}}\)-Modules Cohérents and Holonomes. Hermann, Paris (1993) MATHGoogle Scholar
  30. 30.
    Malgrange, B.: Systèmes différentiels à coefficients constants. Sémin. Bourbaki 63, 1–11 (1962) Google Scholar
  31. 31.
    McConnell, J.C., Robson, J.C.: Noncommutative Noetherian Rings. American Mathematical Society, Providence (2000) Google Scholar
  32. 32.
    Pommaret, J.-F.: Partial Differential Control Theory. Mathematics and Its Applications. Kluwer Academic, Dordrecht (2001) CrossRefMATHGoogle Scholar
  33. 33.
    Pommaret, J.-F., Quadrat, A.: Algebraic analysis of linear multidimensional control systems. IMA J. Math. Control Inf. 16, 275–297 (1999) CrossRefMATHMathSciNetGoogle Scholar
  34. 34.
    Quadrat, A.: An introduction to constructive algebraic analysis and its applications. Les cours du CIRM, 1 no. 2: Journées Nationales de Calcul Formel, pp. 281–471 (2010). http://hal.archives-ouvertes.fr/inria-00506104/fr/
  35. 35.
    Quadrat, A.: Grade filtration of linear functional systems. Acta Appl. Math. 127, 27–86 (2013) CrossRefMATHMathSciNetGoogle Scholar
  36. 36.
    Quadrat, A., Robertz, D.: On the blowing-up of stably free behaviours. In: Proceedings of CDC-ECC05, Seville, Spain (2005) Google Scholar
  37. 37.
    Quadrat, A., Robertz, D.: Computation of bases of free modules over the Weyl algebras. J. Symb. Comput. 42, 1113–1141 (2007). Stafford project. http://wwwb.math.rwth-aachen.de/OreModules CrossRefMATHMathSciNetGoogle Scholar
  38. 38.
    Quadrat, A., Robertz, D.: Controllability and differential flatness of linear analytic ordinary differential systems. In: Proceedings of MTNS 2010, Budapest, Hungary, 2010. Also in Algebraic Systems Theory, Behaviors, and Codes, pp. 23–30. Shaker, Aachen (2010) Google Scholar
  39. 39.
    Quadrat, A., Robertz, D.: A constructive study of the module structure of rings of partial differential operators. Inria report n. 8225 (2013). http://hal.inria.fr/hal-00785003
  40. 40.
    Rotman, J.J.: An Introduction to Homological Algebra, 2nd edn. Springer, Berlin (2009) CrossRefMATHGoogle Scholar
  41. 41.
    Serre, J.-P.: Modules projectifs et espaces fibrés à fibre vectorielle. Séminaire P. Dubreil, année (1957/1958) Google Scholar
  42. 42.
    Stafford, J.T.: Stable structure of noncommutative noetherian rings. J. Algebra 47, 244–267 (1977) CrossRefMATHMathSciNetGoogle Scholar
  43. 43.
    Stafford, J.T.: Stable structure of noncommutative noetherian rings, II. J. Algebra 52, 218–235 (1978) CrossRefMATHMathSciNetGoogle Scholar
  44. 44.
    Stafford, J.T.: Module structure of Weyl algebras. J. Lond. Math. Soc. 18, 429–442 (1978) CrossRefMATHMathSciNetGoogle Scholar
  45. 45.
    Swan, R.G.: Algebraic K-Theory. Lecture Notes in Mathematics, vol. 76. Springer, Berlin (1968) Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.DISCO project, Supélec, L2SInria Saclay-Île-de-FranceGif-sur-YvetteFrance
  2. 2.School of Computing and MathematicsPlymouth UniversityPlymouthUK

Personalised recommendations