Abstract
The purpose of this paper is to develop constructive versions of Stafford’s theorems on the module structure of Weyl algebras A n (k) (i.e., the rings of partial differential operators with polynomial coefficients) over a base field k of characteristic zero. More generally, based on results of Stafford and Coutinho-Holland, we develop constructive versions of Stafford’s theorems for very simple domains D. The algorithmization is based on the fact that certain inhomogeneous quadratic equations admit solutions in a very simple domain. We show how to explicitly compute a unimodular element of a finitely generated left D-module of rank at least two. This result is used to constructively decompose any finitely generated left D-module into a direct sum of a free left D-module and a left D-module of rank at most one. If the latter is torsion-free, then we explicitly show that it is isomorphic to a left ideal of D which can be generated by two elements. Then, we give an algorithm which reduces the number of generators of a finitely presented left D-module with module of relations of rank at least two. In particular, any finitely generated torsion left D-module can be generated by two elements and is the homomorphic image of a projective ideal whose construction is explicitly given. Moreover, a non-torsion but non-free left D-module of rank r can be generated by r+1 elements but no fewer. These results are implemented in the Stafford package for D=A n (k) and their system-theoretical interpretations are given within a D-module approach. Finally, we prove that the above results also hold for the ring of ordinary differential operators with either formal power series or locally convergent power series coefficients and, using a result of Caro-Levcovitz, also for the ring of partial differential operators with coefficients in the field of fractions of the ring of formal power series or of the ring of locally convergent power series.
This is a preview of subscription content, access via your institution.
References
Barakat, M., Robertz, D.: homalg: a meta-package for homological algebra. J. Algebra Appl. 7, 299–317 (2008)
Barakat, M., Lange-Hegermann, M.: An axiomatic setup for algorithmic homological algebra and an alternative approach to localization. J. Algebra Appl. 10, 269–293 (2011)
Barakat, M., Bremer, B.: Higher extension modules and the Yoneda product. Preprint arXiv:0802.3179 (http://arxiv.org/abs/0802.3179), submitted for publication (2008)
Barakat, M.: Spectral filtrations via generalized morphisms. Preprint arXiv:0904.0240 (http://arxiv.org/abs/0904.0240), submitted for publication (2009)
Bass, H.: Algebraic K-Theory. Benjamin, Elmsford (1968)
Björk, J.E.: Rings of Differential Operators. North Holland, Amsterdam (1979)
Boudellioua, M.S., Quadrat, A.: Serre’s reduction of linear functional systems. Math. Comput. Sci. 4, 289–312 (2010)
Byun, L.H.: A note on the module structure of Weyl algebras and simple noetherian rings. Commun. Algebra 21, 991–998 (1993)
Caro, N., Levcovitz, D.: On a theorem of Stafford. Cad. Math. 11, 63–70 (2010)
Churchill, R.C., Kovacic, J.J.: Cyclic vectors. In: Proceedings of Differential Algebra and Related Topics, Rutgers University, Newark, 2–3 November 2002
Chyzak, F., Quadrat, A., Robertz, D.: Effective algorithms for parametrizing linear control systems over Ore algebras. Appl. Algebra Eng. Commun. Comput. 16, 319–376 (2005)
Chyzak, F., Quadrat, A., Robertz, D.: OreModules: a symbolic package for the study of multidimensional linear systems. In: Chiasson, J., Loiseau, J.-J. (eds.) Applications of Time-Delay Systems. Lecture Notes in Control and Inform., vol. 352, pp. 233–264. Springer, Berlin (2007). OreModules project. http://wwwb.math.rwth-aachen.de/OreModules
Cluzeau, T., Quadrat, A.: Factoring and decomposing a class of linear functional systems. Linear Algebra Appl. 428, 324–381 (2008)
Cluzeau, T., Quadrat, A.: OreMorphisms: a homological algebraic package for factoring and decomposing linear functional systems. In: Loiseau, J.-J., Michiels, W., Niculescu, S.-I., Sipahi, R. (eds.) Topics in Time-Delay Systems: Analysis, Algorithms and Control. Lecture Notes in Control and Inform., vol. 388, pp. 179–196. Springer, Berlin (2009). OreMorphisms project. http://pages.saclay.inria.fr/alban.quadrat//OreMorphisms/index.html
Cluzeau, T., Quadrat, A.: Serre’s reduction of linear partial differential systems with holonomic adjoints. J. Symb. Comput. 47, 1192–1213 (2012)
Cluzeau, T., Quadrat, A.: A constructive version of Fitting’s theorem on isomorphisms and equivalences of linear systems. In: Proceedings of NDS’11, Poitiers, France (2011)
Coquand, T., Lombardi, H., Quitté, C.: Generating non-Noetherian modules constructively. Manuscr. Math. 115, 513–520 (2004)
Coutinho, S.C., Holland, M.P.: Module structure of rings of differential operators. Proc. Lond. Math. Soc. 57, 417–432 (1988)
Eisenbud, D.: Commutative Algebra with a View Toward Algebraic Geometry. Graduate Texts in Mathematics, vol. 150. Springer, Berlin (1995)
Gago-Vargas, J.: Bases for projective modules in A n (k). J. Symb. Comput. 36, 845–853 (2003)
Gallego, C., Lezama, O.: Gröbner bases for ideals of σ-PBW extensions. Commun. Algebra 39, 50–75 (2011)
Hillebrand, A., Schmale, W.: Towards an effective version of a theorem of Stafford. J. Symb. Comput. 32, 699–716 (2001)
Kalman, R.E., Falb, P.L., Arbib, M.A.: Topics in Mathematical System Theory. McGraw-Hill, New York (1969)
Kashiwara, M.: Algebraic study of systems of partial differential equations. Master Thesis. Tokyo Univ., 1970. Mémoires de la Société Mathématiques de France 63 (1995) (English translation)
Lam, T.Y.: Lectures on Modules and Rings. Graduate Texts in Mathematics, vol. 189. Springer, Berlin (1999)
Leykin, A.: Algorithmic proofs of two theorems of Stafford. J. Symb. Comput. 38, 1535–1550 (2004)
Leykin, A., Tsai, H.: Dmodules—algorithms for D-modules. Macaulay2 package. http://www.math.uiuc.edu/Macaulay2/
Lombardi, H., Quitté, C.: Algèbre Commutative. Calvage & Mounet, Paris (2011)
Maisonobe, P., Sabbah, C.: \({\mathcal{D}}\)-Modules Cohérents and Holonomes. Hermann, Paris (1993)
Malgrange, B.: Systèmes différentiels à coefficients constants. Sémin. Bourbaki 63, 1–11 (1962)
McConnell, J.C., Robson, J.C.: Noncommutative Noetherian Rings. American Mathematical Society, Providence (2000)
Pommaret, J.-F.: Partial Differential Control Theory. Mathematics and Its Applications. Kluwer Academic, Dordrecht (2001)
Pommaret, J.-F., Quadrat, A.: Algebraic analysis of linear multidimensional control systems. IMA J. Math. Control Inf. 16, 275–297 (1999)
Quadrat, A.: An introduction to constructive algebraic analysis and its applications. Les cours du CIRM, 1 no. 2: Journées Nationales de Calcul Formel, pp. 281–471 (2010). http://hal.archives-ouvertes.fr/inria-00506104/fr/
Quadrat, A.: Grade filtration of linear functional systems. Acta Appl. Math. 127, 27–86 (2013)
Quadrat, A., Robertz, D.: On the blowing-up of stably free behaviours. In: Proceedings of CDC-ECC05, Seville, Spain (2005)
Quadrat, A., Robertz, D.: Computation of bases of free modules over the Weyl algebras. J. Symb. Comput. 42, 1113–1141 (2007). Stafford project. http://wwwb.math.rwth-aachen.de/OreModules
Quadrat, A., Robertz, D.: Controllability and differential flatness of linear analytic ordinary differential systems. In: Proceedings of MTNS 2010, Budapest, Hungary, 2010. Also in Algebraic Systems Theory, Behaviors, and Codes, pp. 23–30. Shaker, Aachen (2010)
Quadrat, A., Robertz, D.: A constructive study of the module structure of rings of partial differential operators. Inria report n. 8225 (2013). http://hal.inria.fr/hal-00785003
Rotman, J.J.: An Introduction to Homological Algebra, 2nd edn. Springer, Berlin (2009)
Serre, J.-P.: Modules projectifs et espaces fibrés à fibre vectorielle. Séminaire P. Dubreil, année (1957/1958)
Stafford, J.T.: Stable structure of noncommutative noetherian rings. J. Algebra 47, 244–267 (1977)
Stafford, J.T.: Stable structure of noncommutative noetherian rings, II. J. Algebra 52, 218–235 (1978)
Stafford, J.T.: Module structure of Weyl algebras. J. Lond. Math. Soc. 18, 429–442 (1978)
Swan, R.G.: Algebraic K-Theory. Lecture Notes in Mathematics, vol. 76. Springer, Berlin (1968)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Quadrat, A., Robertz, D. A Constructive Study of the Module Structure of Rings of Partial Differential Operators. Acta Appl Math 133, 187–234 (2014). https://doi.org/10.1007/s10440-013-9864-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10440-013-9864-x
Keywords
- Weyl algebras
- Stafford’s theorems
- Linear systems of partial differential equations
- D-modules
- Mathematical systems theory
- Constructive algebra
- Symbolic computation