Skip to main content

A Constructive Study of the Module Structure of Rings of Partial Differential Operators

Abstract

The purpose of this paper is to develop constructive versions of Stafford’s theorems on the module structure of Weyl algebras A n (k) (i.e., the rings of partial differential operators with polynomial coefficients) over a base field k of characteristic zero. More generally, based on results of Stafford and Coutinho-Holland, we develop constructive versions of Stafford’s theorems for very simple domains D. The algorithmization is based on the fact that certain inhomogeneous quadratic equations admit solutions in a very simple domain. We show how to explicitly compute a unimodular element of a finitely generated left D-module of rank at least two. This result is used to constructively decompose any finitely generated left D-module into a direct sum of a free left D-module and a left D-module of rank at most one. If the latter is torsion-free, then we explicitly show that it is isomorphic to a left ideal of D which can be generated by two elements. Then, we give an algorithm which reduces the number of generators of a finitely presented left D-module with module of relations of rank at least two. In particular, any finitely generated torsion left D-module can be generated by two elements and is the homomorphic image of a projective ideal whose construction is explicitly given. Moreover, a non-torsion but non-free left D-module of rank r can be generated by r+1 elements but no fewer. These results are implemented in the Stafford package for D=A n (k) and their system-theoretical interpretations are given within a D-module approach. Finally, we prove that the above results also hold for the ring of ordinary differential operators with either formal power series or locally convergent power series coefficients and, using a result of Caro-Levcovitz, also for the ring of partial differential operators with coefficients in the field of fractions of the ring of formal power series or of the ring of locally convergent power series.

This is a preview of subscription content, access via your institution.

References

  1. Barakat, M., Robertz, D.: homalg: a meta-package for homological algebra. J. Algebra Appl. 7, 299–317 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  2. Barakat, M., Lange-Hegermann, M.: An axiomatic setup for algorithmic homological algebra and an alternative approach to localization. J. Algebra Appl. 10, 269–293 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  3. Barakat, M., Bremer, B.: Higher extension modules and the Yoneda product. Preprint arXiv:0802.3179 (http://arxiv.org/abs/0802.3179), submitted for publication (2008)

  4. Barakat, M.: Spectral filtrations via generalized morphisms. Preprint arXiv:0904.0240 (http://arxiv.org/abs/0904.0240), submitted for publication (2009)

  5. Bass, H.: Algebraic K-Theory. Benjamin, Elmsford (1968)

    Google Scholar 

  6. Björk, J.E.: Rings of Differential Operators. North Holland, Amsterdam (1979)

    MATH  Google Scholar 

  7. Boudellioua, M.S., Quadrat, A.: Serre’s reduction of linear functional systems. Math. Comput. Sci. 4, 289–312 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  8. Byun, L.H.: A note on the module structure of Weyl algebras and simple noetherian rings. Commun. Algebra 21, 991–998 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  9. Caro, N., Levcovitz, D.: On a theorem of Stafford. Cad. Math. 11, 63–70 (2010)

    Google Scholar 

  10. Churchill, R.C., Kovacic, J.J.: Cyclic vectors. In: Proceedings of Differential Algebra and Related Topics, Rutgers University, Newark, 2–3 November 2002

    Google Scholar 

  11. Chyzak, F., Quadrat, A., Robertz, D.: Effective algorithms for parametrizing linear control systems over Ore algebras. Appl. Algebra Eng. Commun. Comput. 16, 319–376 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Chyzak, F., Quadrat, A., Robertz, D.: OreModules: a symbolic package for the study of multidimensional linear systems. In: Chiasson, J., Loiseau, J.-J. (eds.) Applications of Time-Delay Systems. Lecture Notes in Control and Inform., vol. 352, pp. 233–264. Springer, Berlin (2007). OreModules project. http://wwwb.math.rwth-aachen.de/OreModules

    Chapter  Google Scholar 

  13. Cluzeau, T., Quadrat, A.: Factoring and decomposing a class of linear functional systems. Linear Algebra Appl. 428, 324–381 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. Cluzeau, T., Quadrat, A.: OreMorphisms: a homological algebraic package for factoring and decomposing linear functional systems. In: Loiseau, J.-J., Michiels, W., Niculescu, S.-I., Sipahi, R. (eds.) Topics in Time-Delay Systems: Analysis, Algorithms and Control. Lecture Notes in Control and Inform., vol. 388, pp. 179–196. Springer, Berlin (2009). OreMorphisms project. http://pages.saclay.inria.fr/alban.quadrat//OreMorphisms/index.html

    Chapter  Google Scholar 

  15. Cluzeau, T., Quadrat, A.: Serre’s reduction of linear partial differential systems with holonomic adjoints. J. Symb. Comput. 47, 1192–1213 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  16. Cluzeau, T., Quadrat, A.: A constructive version of Fitting’s theorem on isomorphisms and equivalences of linear systems. In: Proceedings of NDS’11, Poitiers, France (2011)

    Google Scholar 

  17. Coquand, T., Lombardi, H., Quitté, C.: Generating non-Noetherian modules constructively. Manuscr. Math. 115, 513–520 (2004)

    Article  MATH  Google Scholar 

  18. Coutinho, S.C., Holland, M.P.: Module structure of rings of differential operators. Proc. Lond. Math. Soc. 57, 417–432 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  19. Eisenbud, D.: Commutative Algebra with a View Toward Algebraic Geometry. Graduate Texts in Mathematics, vol. 150. Springer, Berlin (1995)

    MATH  Google Scholar 

  20. Gago-Vargas, J.: Bases for projective modules in A n (k). J. Symb. Comput. 36, 845–853 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  21. Gallego, C., Lezama, O.: Gröbner bases for ideals of σ-PBW extensions. Commun. Algebra 39, 50–75 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  22. Hillebrand, A., Schmale, W.: Towards an effective version of a theorem of Stafford. J. Symb. Comput. 32, 699–716 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  23. Kalman, R.E., Falb, P.L., Arbib, M.A.: Topics in Mathematical System Theory. McGraw-Hill, New York (1969)

    MATH  Google Scholar 

  24. Kashiwara, M.: Algebraic study of systems of partial differential equations. Master Thesis. Tokyo Univ., 1970. Mémoires de la Société Mathématiques de France 63 (1995) (English translation)

  25. Lam, T.Y.: Lectures on Modules and Rings. Graduate Texts in Mathematics, vol. 189. Springer, Berlin (1999)

    MATH  Google Scholar 

  26. Leykin, A.: Algorithmic proofs of two theorems of Stafford. J. Symb. Comput. 38, 1535–1550 (2004)

    Article  MathSciNet  Google Scholar 

  27. Leykin, A., Tsai, H.: Dmodules—algorithms for D-modules. Macaulay2 package. http://www.math.uiuc.edu/Macaulay2/

  28. Lombardi, H., Quitté, C.: Algèbre Commutative. Calvage & Mounet, Paris (2011)

    MATH  Google Scholar 

  29. Maisonobe, P., Sabbah, C.: \({\mathcal{D}}\)-Modules Cohérents and Holonomes. Hermann, Paris (1993)

    MATH  Google Scholar 

  30. Malgrange, B.: Systèmes différentiels à coefficients constants. Sémin. Bourbaki 63, 1–11 (1962)

    Google Scholar 

  31. McConnell, J.C., Robson, J.C.: Noncommutative Noetherian Rings. American Mathematical Society, Providence (2000)

    Google Scholar 

  32. Pommaret, J.-F.: Partial Differential Control Theory. Mathematics and Its Applications. Kluwer Academic, Dordrecht (2001)

    Book  MATH  Google Scholar 

  33. Pommaret, J.-F., Quadrat, A.: Algebraic analysis of linear multidimensional control systems. IMA J. Math. Control Inf. 16, 275–297 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  34. Quadrat, A.: An introduction to constructive algebraic analysis and its applications. Les cours du CIRM, 1 no. 2: Journées Nationales de Calcul Formel, pp. 281–471 (2010). http://hal.archives-ouvertes.fr/inria-00506104/fr/

  35. Quadrat, A.: Grade filtration of linear functional systems. Acta Appl. Math. 127, 27–86 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  36. Quadrat, A., Robertz, D.: On the blowing-up of stably free behaviours. In: Proceedings of CDC-ECC05, Seville, Spain (2005)

    Google Scholar 

  37. Quadrat, A., Robertz, D.: Computation of bases of free modules over the Weyl algebras. J. Symb. Comput. 42, 1113–1141 (2007). Stafford project. http://wwwb.math.rwth-aachen.de/OreModules

    Article  MATH  MathSciNet  Google Scholar 

  38. Quadrat, A., Robertz, D.: Controllability and differential flatness of linear analytic ordinary differential systems. In: Proceedings of MTNS 2010, Budapest, Hungary, 2010. Also in Algebraic Systems Theory, Behaviors, and Codes, pp. 23–30. Shaker, Aachen (2010)

    Google Scholar 

  39. Quadrat, A., Robertz, D.: A constructive study of the module structure of rings of partial differential operators. Inria report n. 8225 (2013). http://hal.inria.fr/hal-00785003

  40. Rotman, J.J.: An Introduction to Homological Algebra, 2nd edn. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  41. Serre, J.-P.: Modules projectifs et espaces fibrés à fibre vectorielle. Séminaire P. Dubreil, année (1957/1958)

  42. Stafford, J.T.: Stable structure of noncommutative noetherian rings. J. Algebra 47, 244–267 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  43. Stafford, J.T.: Stable structure of noncommutative noetherian rings, II. J. Algebra 52, 218–235 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  44. Stafford, J.T.: Module structure of Weyl algebras. J. Lond. Math. Soc. 18, 429–442 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  45. Swan, R.G.: Algebraic K-Theory. Lecture Notes in Mathematics, vol. 76. Springer, Berlin (1968)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Quadrat.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Quadrat, A., Robertz, D. A Constructive Study of the Module Structure of Rings of Partial Differential Operators. Acta Appl Math 133, 187–234 (2014). https://doi.org/10.1007/s10440-013-9864-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-013-9864-x

Keywords

  • Weyl algebras
  • Stafford’s theorems
  • Linear systems of partial differential equations
  • D-modules
  • Mathematical systems theory
  • Constructive algebra
  • Symbolic computation