Acta Applicandae Mathematicae

, Volume 133, Issue 1, pp 33–43 | Cite as

A Note on Aubin-Lions-Dubinskiĭ Lemmas



Strong compactness results for families of functions in seminormed nonnegative cones in the spirit of the Aubin-Lions-Dubinskiĭ lemma are proven, refining some recent results in the literature. The first theorem sharpens slightly a result of Dubinskiĭ (in Mat. Sb. 67(109):609–642, 1965) for seminormed cones. The second theorem applies to piecewise constant functions in time and sharpens slightly the results of Dreher and Jüngel (in Nonlinear Anal. 75:3072–3077, 2012) and Chen and Liu (in Appl. Math. Lett. 25:2252–2257, 2012). An application is given, which is useful in the study of porous-medium or fast-diffusion type equations.


Compactness in Banach spaces Rothe method Dubinskii lemma Seminormed cone 

Mathematics Subject Classification (2000)

46B50 35A35 


  1. 1.
    Alt, H.W., Luckhaus, S.: Quasilinear eliptic-parabolic differential equations. Math. Z. 183, 311–341 (1983) CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Amann, H.: Compact embeddings of vector-valued Sobolev and Besov spaces. Glas. Mat. 35, 161–177 (2000) MATHMathSciNetGoogle Scholar
  3. 3.
    Aubin, J.: Un théorème de compacité. C. R. Acad. Sci. Paris 256, 5042–5044 (1963) MATHMathSciNetGoogle Scholar
  4. 4.
    Barrett, J., Süli, E.: Reflections on Dubinskiĭ’s nonlinear compact embedding theorem. Publ. Inst. Math. 91, 95–110 (2012) CrossRefGoogle Scholar
  5. 5.
    Bogachev, V.I.: Measure Theory, Volume I. Springer, Berlin (2007) CrossRefGoogle Scholar
  6. 6.
    Brezis, H., Lieb, E.H.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 88, 486–490 (1983) CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Carrillo, J.A., Hittmeir, S., Jüngel, A.: Cross diffusion and nonlinear diffusion preventing blow up in the Keller-Segel model. Math. Models Methods Appl. Sci. 22, 1250041 (2012), 35 pp. CrossRefMathSciNetGoogle Scholar
  8. 8.
    Chen, X., Liu, J.-G.: Two nonlinear compactness theorems in L p(0,T;B). Appl. Math. Lett. 25, 2252–2257 (2012) CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Chen, X., Liu, J.-G.: Analysis of polymeric floe models and related compactness theorems in weighted space. SIAM J. Math. Anal. 45, 1179–1215 (2013) CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Dreher, M., Jüngel, A.: Compact families of piecewise constant functions in L p(0,T;B). Nonlinear Anal. 75, 3072–3077 (2012) CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Dubinskiĭ, Y.A.: Weak convergence for nonlinear elliptic and parabolic equations. Mat. Sb. 67(109), 609–642 (1965) (In Russian) MathSciNetGoogle Scholar
  12. 12.
    Gallouët, T., Latché, J.-C.: Compactness of discrete approximate solutions to parabolic PDEs—application to a turbulence model. Commun. Pure Appl. Anal. 11, 2371–2391 (2012) CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Hittmeier, S., Jüngel, A.: Cross diffusion preventing blow-up in the two-dimensional Keller-Segel model. SIAM J. Math. Anal. 43, 997–1022 (2011) CrossRefMathSciNetGoogle Scholar
  14. 14.
    Kačur, J.: Method of Rothe in Evolution Equations. Teubner, Leipzig (1985) MATHGoogle Scholar
  15. 15.
    Kalita, P.: Convergence of Rothe scheme for hemivariational inequalities of parabolic type. Int. J. Numer. Anal. Model. 10, 445–465 (2013) MATHMathSciNetGoogle Scholar
  16. 16.
    Lions, J.-L.: Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires. Dunod/Gauthier-Villard, Paris (1969) MATHGoogle Scholar
  17. 17.
    Maitre, E.: On a nonlinear compactness lemma in L p(0,T;B). Int. J. Math. Math. Sci. 27, 1725–1730 (2003) CrossRefMathSciNetGoogle Scholar
  18. 18.
    Rakotoson, J., Temam, R.: An optimal compactness theorem and application to elliptic-parabolic systems. Appl. Math. Lett. 14, 303–306 (2001) CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Rossi, R., Savaré, G.: Tightness, integral equicontinuity and compactness for evolution problems in Banach spaces. Ann. Sc. Norm. Super. Pisa 2, 395–431 (2003) MATHGoogle Scholar
  20. 20.
    Roubíček, T.: A generalization of the Lions-Temam compact imbedding theorem. Čas. Pěst. Mat. 115, 338–342 (1990) MATHGoogle Scholar
  21. 21.
    Roubíček, T.: Nonlinear Partial Differential Equations with Applications. Birkhäuser, Basel (2005) MATHGoogle Scholar
  22. 22.
    Simon, J.: Compact sets in the space L p(0,T;B). Ann. Mat. Pura Appl. 146, 65–96 (1987) CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Temam, R.: Navier-Stokes Equations and Nonlinear Functional Analysis, 2nd edn. SIAM, Philadelphia (1995) CrossRefMATHGoogle Scholar
  24. 24.
    Walkington, N.: Compactness properties of the DG and CG time stepping scheme for parabolic equations. SIAM J. Numer. Anal. 47, 4680–4710 (2010) CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.School of SciencesBeijing University of Posts and TelecommunicationsBeijingChina
  2. 2.Institute for Analysis and Scientific ComputingVienna University of TechnologyWienAustria
  3. 3.Department of Physics and Department of MathematicsDuke UniversityDurhamUSA

Personalised recommendations