Skip to main content
Log in

Planetary Motion on an Expanding Locally Anisotropic Background

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

In this work are computed analytical solutions for orbital motion on a background described by an Expanding Locally Anisotropic (ELA) metric ansatz. This metric interpolates between the Schwarzschild metric near the central mass and the Robertson-Walker metric describing the expanding cosmological background far from the central mass allowing for a fine-tuneable covariant parameterization of gravitational interactions corrections in between these two asymptotic limits. In particular it is shown that the decrease of the Sun’s mass by radiation emission plus the General Relativity corrections due to the ELA metric background with respect to Schwarzschild backgrounds can be mapped to the reported yearly variation of the gravitational constant \(\dot{G}\) through Kepler’s third law. Based on the value of the heuristic fit corresponding to the more recent heliocentric ephemerides of the Solar System are derived bounds for the value of a constant parameter α 0 for the ELA metric as well as the maximal corrections to perihelion advance and orbital radii variation within this framework. Hence it is shown that employing the ELA metric as a functional covariant parameterization to model gravitational interactions corrections within the Solar System allows to maintain the measurement projection standards constant over time, specifically both the Astronomical Unit (AU) and the Gravitational constant (G). Also it is noted that the effect obtained is not homogeneous for all planetary orbits consistently with the diversity of estimates in the literature obtained assuming Schwarzschild backgrounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Castelo Ferreira, P.: An expanding locally anisotropic (ELA) metric for matter in an expanding universe. Phys. Lett. B 684, 73–76 (2010). arXiv:1006.1617

    Article  Google Scholar 

  2. Castelo Ferreira, P.: A locally anisotropic metric for matter in an expanding universe I. arXiv:0907.0847

  3. Carrera, M., Giulini, D.: On the Influence of the global expansion on the local dynamics in the solar system. arXiv:gr-qc/0602098

  4. Carrera, M., Giulini, D.: On the Influence of the global cosmological expansion on the dynamics and kinematics of local systems. arXiv:0810.2712

  5. Faraoni, V., Jacques, A.: Cosmological expansion and local physics. arXiv:0707.1350

  6. Nolan, B.C.: A point mass in an isotropic universe: II. Global properties. Class. Quantum Gravity 16, 1227–1254 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. Sereno, M., Jetzer, P.: Evolution of gravitational orbits in the expanding universe. Phys. Rev. D 75, 064031 (2007). arXiv:astro-ph/0703121

    Article  MathSciNet  Google Scholar 

  8. Bolen, B., Bombelli, L., Puzio, R.: Expansion-induced contributions to the perihelium advance of binary orbits. Class. Quantum Gravity 18, 1173–1178 (2001)

    Article  MATH  Google Scholar 

  9. Pitjeva, E.V., Pitjev, N.P.: Changes in the Sun’s mass and gravitational constant estimated using modern observations of planets and spacecraft. Sol. Syst. Res. 46, 78–87 (2012). arXiv:1108.0246

    Article  Google Scholar 

  10. Hubble, E.P.: A relation between distance and radial velocity among extragalactic nebulae. Proc. Natl. Acad. Sci. USA 15, 169–173 (1929)

    Article  Google Scholar 

  11. Sandage, A.: The change of redshift and apparent luminosity of galaxies due to the deceleration of selected expanding universes. Astrophys. J. 136, 319 (1962)

    Article  Google Scholar 

  12. Guth, A.H.: Inflationary universe: a possible solution to the horizon and flatness problems. Phys. Rev. D 23, 347–356 (1981)

    Article  Google Scholar 

  13. Schwarzschild, K.: On the gravitational field of a mass point according to Einstein’s theory. In: Sitzungsber. Preuss. Akad. Wiss. Berlin—Math. Phys., pp. 189–196 (1916). physics/9905030

    Google Scholar 

  14. Schwarzschild, K.: On the gravitational field of a sphere of incompressible fluid according to Einstein’s theory. In: Sitzungsber. Preuss. Akad. Wiss. Berlin—Math. Phys., pp. 424–434 (1916). physics/9912033

    Google Scholar 

  15. Robertson, H.P.: Kinematics and world structure. Astron. J. 82, 248–301 (1935)

    Article  Google Scholar 

  16. Robertson, H.P.: Kinematics and world structure. Astron. J. 83, 187–201 (1936)

    Article  Google Scholar 

  17. Robertson, H.P.: Kinematics and world structure. Astron. J. 83, 257–271 (1936)

    Article  MATH  Google Scholar 

  18. Walker, A.G.: On Milne’s theory of world structure. Proc. Lond. Math. Soc. 42, 90–127 (1936)

    Google Scholar 

  19. McVittie, G.C.: The mass particle in an expanding universe. Mon. Not. R. Astron. Soc. 93, 325 (1933)

    Google Scholar 

  20. Mizony, M., Lachièze-Rey, M.: Cosmological effects in the local static frame. Astron. Astrophys. 434, 45–52 (2005). arXiv:gr-qc/0412084

    Article  MATH  Google Scholar 

  21. Atkins, G.S., McDonnell, J., Fell, R.N.: Cosmological perturbations on local systems. arXiv:gr-qc/0612146

  22. Ferraris, M., Francaviglia, M., Spallicci, A.: Associated radius, energy and pressure of McVittie’s metric in its astrophysical application. Nuovo Cimento B 111, 1031–1036 (1996)

    Article  Google Scholar 

  23. Davis, M., Peebles, P.J.E.: Evidence for local anisotropy of the Hubble flow. Annu. Rev. Astron. Astrophys. 21, 109–130 (1983)

    Article  Google Scholar 

  24. Komatsu, E., et al.: Five-year Wilkinson microwave anisotropy probe (WMAP) observations: cosmological interpretation. Astron. J. Suppl. 180, 330–376 (2009). arXiv:0803.0547

    Article  Google Scholar 

  25. Jarosik, N., et al.: Seven-year Wilkinson microwave anisotropy probe (WMAP) observations: sky maps, systematic errors, and basic results. arXiv:1001.4744

  26. Castelo Ferreira, P.: Parameterizing the flattening of galaxies rotation curves on expanding locally anisotropic backgrounds. arXiv:1006.1619

  27. Castelo Ferreira, P.: Constraining an expanding locally anisotropic metric from the Pioneer anomaly. Adv. Space Res. 51, 1266–1277 (2013). arXiv:1202.6189

    Article  Google Scholar 

  28. Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. Freeman, New York (1973)

    Google Scholar 

  29. Kenyon, I.R.: General Relativity. Oxford Science Publications, Oxford (1995)

    Google Scholar 

  30. Pitjeva, E.V.: High-precision ephemerides of planets—EPM and determination of some astronomical constants. Sol. Syst. Res. 39, 176–186 (2005)

    Article  Google Scholar 

  31. Fienga, A., Laskar, J., Kuchynka, P., Manche, H., Desvignes, G., Gastineau, M., Cognard, I., Theureau, G.: The INPOP10a planetary ephemeris and its applications in fundamental physics. Celest. Mech. Dyn. Astron. 111, 363–385 (2011)

    Article  Google Scholar 

  32. Nordtvedt, K.: Equivalence principle for massive bodies. I. Phenomenology. Phys. Rev. 169, 1014–1016 (1968)

    Article  Google Scholar 

  33. Nordtvedt, K.: Equivalence principle for massive bodies. II. Theory. Phys. Rev. 169, 1017–1025 (1968)

    Article  Google Scholar 

  34. Newhall, X.X., Standish, E.M. Jr., Williams, J.G.: DE102: a numerically integrated ephemerides of the moon and planets spanning forty-four centuries. Astron. Astrophys. 125, 150–167 (1983)

    MATH  Google Scholar 

  35. Pitjeva, E.V.: Modern numerical theories of the motion of the Sun, Moon and major planets: a comprehensive commentary to the astronomical yearbook. Tr. Inst. Prikl. Astron. Ross. Akad. Nauk 10, 112–134 (2004)

    Google Scholar 

  36. International Astronomical Union (IAU): Proc. 16th General Assembly. Trans. IAU 17(31), 52–66 (1976)

    Google Scholar 

  37. Standish, E.M.: The astronomical unit now. In: Kurtz, D.W. (ed.) Transits of venus: new views of the solar system and galaxy, proceedings of IAU colloquium, vol. 196, pp. 163–179. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  38. Krasinsky, G.A., Brumberg, V.A.: Secular increase of the astronomical unit from analysis of the major planet motions and its interpretation. Celest. Mech. Dyn. Astron. 90, 267–288 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  39. Uzan, J.-P.: The fundamental constants and their variation: observational status and theoretical motivations. Rev. Mod. Phys. 75, 403 (2003). arXiv:hep-ph/0205340

    Article  MATH  MathSciNet  Google Scholar 

  40. Uzan, J.-P.: Varying constants, gravitation and cosmology. Living Rev. Relativ. 14, 2 (2011). arXiv:1009.5514

    Article  Google Scholar 

  41. Standish, E.M.: JPL planetary and lunar ephemerides, DE405/LE405. Jet Propulsion Laboratory (1998). IOM 312.F-98-048

  42. Williams, D.R.: Solar system fact sheets. http://nssdc.gsfc.nasa.gov/planetary/planetfact.html

  43. Damour, T., Gibbons, G.W., Taylor, J.H.: Limits on the variability of G using binary-pulsar data. Phys. Rev. Lett. 61, 1151–1154 (1988)

    Article  Google Scholar 

  44. Thibault, D., Taylor, J.H.: On the orbital period change of the binary pulsar PSR 1913 + 16. Astrophys. J. 366, 501–511 (1992)

    Google Scholar 

  45. Veras, D., Wyatt, M.C.: The solar system’s post-main sequence escape boundary. arXiv:1201.2412

  46. Hadjidemetriou, J.D.: Two-body problem with variable mass: a new approach. Icarus 2, 440–451 (1963)

    Article  MathSciNet  Google Scholar 

  47. Verhulst, F.: Two-body problem with decreasing mass: the autonomous case. Bull. Astr. Inst. Netherlands 20, 215–221 (1969)

    Google Scholar 

  48. Deprit, A.: The secular accelerations in Gylden’s problem. Celest. Mech. 31, 1–22 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  49. Veras, D., Wyatt, M.C., Mustill, A.J., Bonsor, A., Eldridge, J.J.: The great escape: how exoplanets and smaller bodies desert dying stars. Mon. Not. R. Astron. Soc. 417, 2104–2123 (2011). arXiv:1107.1239

    Article  Google Scholar 

  50. Arakida, H.: Time delay in Robertson-McVittie spacetime and its application to increase of astronomical unit. New Astron. 14, 264–268 (2009). arXiv:0808.3828

    Article  Google Scholar 

  51. Sereno, M., Jetzer, P.: Dark matter vs. modifications of the gravitational inverse-square law. Results from planetary motion in the solar system. Mon. Not. R. Astron. Soc. 371, 626–632 (2006). arXiv:astro-ph/0606197

    Article  Google Scholar 

  52. Shapiro, I.I., Smith, W.B., Ash, M.B.: Gravitational constant—experimental bound on its time variation. Phys. Rev. Lett. 26, 27 (1971)

    Article  Google Scholar 

  53. Turyshev, S.G., Williams, J.G.: Space-based tests of gravity with laser ranging. Int. J. Mod. Phys. D 16, 2165–2179 (2007). arXiv:gr-qc/0611095

    Article  Google Scholar 

  54. Konopliv, A.S., et al.: Mars high resolution gravity fields from MRO, Mars seasonal gravity, and other dynamical parameters. Icarus 211, 401–428 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grant SFRH/BPD/34566/2007 from FCT-MCTES. Work developed in the scope of the strategical project of GFM-UL PEst-OE/MAT/UI0208/2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Castelo Ferreira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castelo Ferreira, P. Planetary Motion on an Expanding Locally Anisotropic Background. Acta Appl Math 131, 155–177 (2014). https://doi.org/10.1007/s10440-013-9852-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-013-9852-1

Keywords

Mathematics Subject Classification

Navigation