Skip to main content
Log in

Relaxation of Optimal Control Problem Governed by Semilinear Elliptic Equation with Leading Term Containing Controls

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

An optimal control problem governed by semilinear elliptic partial differential equation is considered. The equation is in divergence form with the leading term containing controls. A relaxed problem is constructed by homogenization. By studying the G-closure problem, a local representation of admissible set of relaxed control is given. Finally, the maximum principle of relaxed problem is established via homogenization spike variation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allaire, G.: Shape Optimization by the Homogenization Method. Springer, New York (2002)

    Book  MATH  Google Scholar 

  2. Bellido, J.C., Pedregal, P.: Explicit quasiconvexification for some cost functionals depending on derivatives of the state in optimal designing. Discrete Contin. Dyn. Syst. 8(4), 967–982 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bensoussan, A., Lions, J.L., Papanicolaou, G.: Asymptotic Analysis for Periodic Structures. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  4. Berkovitz, L.D.: Optimal Control Theory. Springer, New York (1983)

    Google Scholar 

  5. Cabib, E., Dal Maso, G.: On a class of optimum problems in structural design. J. Optim. Theory Appl. 56, 39–65 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  6. Casado-Diaz, J., Couce-Calvo, J., Martin-Gómez, J.D.: Optimality conditions for nonconvex multistate control problems in the coefficients. SIAM J. Control Optim. 47, 216–239 (2004)

    Article  Google Scholar 

  7. Casado-Diaz, J., Couce-Calvo, J., Martin-Gómez, J.D.: Relaxation of a control problem in the coefficients with a functional of quadratic growth in the gradient. SIAM J. Control Optim. 47(3), 1428–1459 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Fattorini, H.O.: Infinite Dimensional Optimization and Control Theorey. Cambridge University Press, Cambridge (1999)

    Book  Google Scholar 

  9. Filippov, A.F.: On certain questions in the theory of optimal control. SIAM J. Control Optim. 1, 76–84 (1962)

    MATH  Google Scholar 

  10. Gamkrelidze, R.: Principle of Optimal Control Theory. Plenum, New York (1978)

    Book  Google Scholar 

  11. Grabovsky, Y.: Optimal design problems for two-phase conducting composites with weakly discontinuous objective functionals. Adv. Appl. Math. 27(4), 683–704 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Halmos, P.R.: Measure Theory. Springer, New York (1974)

    MATH  Google Scholar 

  13. Jikov, V., Kozlov, S., Oleinik, O.: Homogenization of Differential Operators and Integral Functionals. Springer, Berlin (1995)

    Google Scholar 

  14. Kohn, R.V., Strang, G.: Optimal design and relaxation of variational problems. I. Commun. Pure Appl. Math. 39(1), 113–137 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kohn, R.V., Strang, G.: Optimal design and relaxation of variational problems. II. Commun. Pure Appl. Math. 39(2), 139–182 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kohn, R.V., Strang, G.: Optimal design and relaxation of variational problems. III. Commun. Pure Appl. Math. 39(3), 353–377 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  17. Li, B., Lou, H.: Cesari-type conditions for semilinear elliptic equations with leading term containing controls. Math. Control Relat. Fields 1(1), 41–59 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  18. Li, X., Yong, J.: Optimal Control Theory for Infinite Dimensional Systems. Birkhäuser, Boston (1995)

    Book  Google Scholar 

  19. Lou, H., Yong, J.: Optimality conditions for semilinear elliptic equations with leading term containing controls. SIAM J. Control Optim. 48(4), 2366–2387 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  20. Lukkassen, D., Nguetseng, G., Wall, P.: Two-scale convergence. Int. J. Pure Appl. Math. 2(1), 35–86 (2002)

    MATH  MathSciNet  Google Scholar 

  21. Meyers, N.G.: An L p-estimate for the gradient of solutions of second order elliptic divergence equations. Ann. Sc. Norm. Super. Pisa, Cl. Sci. 17, 189–206 (1963)

    MATH  MathSciNet  Google Scholar 

  22. Milton, G., Kohn, R.V.: Variational bounds on the effective moduli of anisotropic composites. J. Mech. Phys. Solids 36(6), 597–629 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  23. Murat, F.: H-convergence. In: Cherkaev, L., Kohn, R.V. (eds.) Topics in the Mathematical Modelling of Coposite Materials. Progress in Nonlinear Differential Equation and their Applications, vol. 31, pp. 21–43. Birkhaüser, Boston (1997). Séminaire d’Analyse Fonctionnelle et Numérique de l’Université d’Alger, 1977–1978. Rewritten as F. Murat and L. Tartar

    Chapter  Google Scholar 

  24. Murat, F., Tartar, L.: Calcul des variations et homogénéisation. In: Cherkaev, L., Kohn, R.V. (eds.) Progress in Nonlinear Diffrential Equations and Their Applications, vol. 31, pp. 139–174. Birkhaüser, Boston (1998). Collection d’tudes d’electricit de France, rewritten in Topics in the Mathematical Modelling of Composite Materials

    Google Scholar 

  25. Papageorgiou, N.S.: Properties of the relaxed trajectories of evolution equations and optimal control. SIAM J. Control Optim. 27, 267–288 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  26. Raitums, U.: On the local representation of G-closure. Arch. Ration. Mech. Anal. 158, 213–234 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  27. Spagnolo, S.: Sul limite delle soluzioni di problemi di Cauchy relativi all’equazione del calore. Ann. Sc. Norm. Super. Pisa, Cl. Sci. 21(3), 657–699 (1967)

    MATH  MathSciNet  Google Scholar 

  28. Spagnolo, S.: Sulla convergenza di soluzioni di equazioni paraboliche ed ellitiche. Ann. Sc. Norm. Super. Pisa, Cl. Sci. 22(3), 571–597 (1968)

    MATH  Google Scholar 

  29. Tartar, L.: Compensated compactness and applications to partial differential equations. In: Nonlinear Analysis and Mechanics, pp. 136–212. Pitman, London (1979)

    Google Scholar 

  30. Tartar, L.: Estimations fines des coefficitents homogénéisés. In: Krée, P. (ed.) Pitman Research Notes in Math., vol. 125, pp. 168–187 (1985). Ennio de Giorgi colloquium

    Google Scholar 

  31. Tartar, L.: An introduction to the homogenization method in optimal design. In: Cellina, A., Ornelas, A. (eds.) Optimal Shape Design, Tróia, 1998. Lecture Notes in Mathematics, vol. 1740, pp. 47–156. Springer, Berlin (2000)

    Chapter  Google Scholar 

  32. Warga, J.: Optimal Control of Differential and Functional Equationis. Academic Press, New York (1972)

    Google Scholar 

  33. Young, L.C.: Lectures on the Calculus of Variational and Optimal Control Theory. Saunders, Philadelphia (1969)

    Google Scholar 

Download references

Acknowledgements

The authors are heartily grateful to the anonymous referees for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwei Lou.

Additional information

This work was supported in part by 973 Program (No. 2011CB808002) and NSFC (No. 61074047).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, B., Lou, H. & Xu, Y. Relaxation of Optimal Control Problem Governed by Semilinear Elliptic Equation with Leading Term Containing Controls. Acta Appl Math 130, 205–236 (2014). https://doi.org/10.1007/s10440-013-9843-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-013-9843-2

Keywords

Mathematics Subject Classification

Navigation