Acta Applicandae Mathematicae

, Volume 130, Issue 1, pp 9–49 | Cite as

Central Limit Theorems for Super Ornstein-Uhlenbeck Processes

Article

Abstract

Suppose that X={Xt:t≥0} is a supercritical super Ornstein-Uhlenbeck process, that is, a superprocess with an Ornstein-Uhlenbeck process on \(\mathbb{R}^{d}\) corresponding to \(L=\frac{1}{2}\sigma^{2}\Delta-b x\cdot\nabla\) as its underlying spatial motion and with branching mechanism ψ(λ)=−αλ+βλ2+∫(0,+∞)(eλx−1+λx)n(dx), where α=−ψ′(0+)>0, β≥0, and n is a measure on (0,∞) such that ∫(0,+∞)x2n(dx)<+∞. Let \(\mathbb{P} _{\mu}\) be the law of X with initial measure μ. Then the process Wt=eαtXt∥ is a positive \(\mathbb{P} _{\mu}\)-martingale. Therefore there is W such that WtW, \(\mathbb{P} _{\mu}\)-a.s. as t→∞. In this paper we establish some spatial central limit theorems for X.

Let \(\mathcal{P}\) denote the function class
$$ \mathcal{P}:=\bigl\{f\in C\bigl(\mathbb{R}^d\bigr): \mbox{there exists } k\in\mathbb{N} \mbox{ such that }|f(x)|/\|x\|^k\to 0 \mbox{ as }\|x\|\to\infty \bigr\}. $$
For each \(f\in\mathcal{P}\) we define an integer γ(f) in term of the spectral decomposition of f. In the small branching rate case α<2γ(f)b, we prove that there is constant \(\sigma_{f}^{2}\in (0,\infty)\) such that, conditioned on no-extinction,
$$\begin{aligned} \biggl(e^{-\alpha t}\|X_t\|, ~\frac{\langle f , X_t\rangle}{\sqrt{\|X_t\|}} \biggr) \stackrel{d}{\rightarrow}\bigl(W^*,~G_1(f)\bigr), \quad t\to\infty, \end{aligned}$$
where W has the same distribution as W conditioned on no-extinction and \(G_{1}(f)\sim \mathcal{N}(0,\sigma_{f}^{2})\). Moreover, W and G1(f) are independent. In the critical rate case α=2γ(f)b, we prove that there is constant \(\rho_{f}^{2}\in (0,\infty)\) such that, conditioned on no-extinction,
$$\begin{aligned} \biggl(e^{-\alpha t}\|X_t\|, ~\frac{\langle f , X_t\rangle}{t^{1/2}\sqrt{\|X_t\|}} \biggr) \stackrel{d}{\rightarrow}\bigl(W^*,~G_2(f)\bigr), \quad t\to\infty, \end{aligned}$$
where W has the same distribution as W conditioned on no-extinction and \(G_{2}(f)\sim \mathcal{N}(0, \rho_{f}^{2})\). Moreover W and G2(f) are independent. We also establish two central limit theorems in the large branching rate case α>2γ(f)b.

Our central limit theorems in the small and critical branching rate cases sharpen the corresponding results in the recent preprint of Miłoś in that our limit normal random variables are non-degenerate. Our central limit theorems in the large branching rate case have no counterparts in the recent preprint of Miłoś. The main ideas for proving the central limit theorems are inspired by the arguments in K. Athreya’s 3 papers on central limit theorems for continuous time multi-type branching processes published in the late 1960’s and early 1970’s.

Keywords

Central limit theorem Backbone decomposition Superprocess Super Ornstein-Uhlenbeck process Branching process Branching Ornstein-Uhlenbeck process Ornstein-Uhlenbeck process 

Mathematics Subject Classification (2000)

60J80 60G57 60J45 

References

  1. 1.
    Adamczak, R., Miłoś, P.: CLT for Ornstein-Uhlenbeck branching particle system. Preprint (2011). arXiv:1111.4559
  2. 2.
    Asmussen, S., Hering, H.: Strong limit theorems for general supercritical branching processes with applications to branching diffusions. Z. Wahrs. Verw. Gebiete 36(3), 195–212 (1976) CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Asmussen, S., Hering, H.: Strong limit theorems for supercritical immigration branching processes. Math. Scand. 39(2), 327–342 (1977) CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Asmussen, S., Hering, H.: Branching Processes. Birkhäuser, Boston (1983) CrossRefMATHGoogle Scholar
  5. 5.
    Asmussen, S., Keiding, N.: Martingale central limit theorems and asymptotic estimation theory for multitype branching processes. Adv. Appl. Probab. 10, 109–129 (1978) CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Athreya, K.B.: Limit theorems for multitype continuous time Markov branching processes I: The case of an eigenvector linear functional. Z. Wahrs. Verw. Gebiete 12, 320–332 (1969) CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Athreya, K.B.: Limit theorems for multitype continuous time Markov branching processes II: The case of an arbitrary linear functional. Z. Wahrs. Verw. Gebiete 13, 204–214 (1969) CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Athreya, K.B.: Some refinements in the theory of supercritical multitype Markov branching processes. Z. Wahrs. Verw. Gebiete 20, 47–57 (1971) CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Berestycki, J., Kyprianou, A.E., Murillo-Salas, A.: The prolific backbone for supercritical superprocesses. Stoch. Proc. Appl. 121, 1315–1331 (2011) CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Conner, H.E.: Asymptotic behavior of averaging processes for a branching process of restricted Brownian particles. J. Math. Anal. Appl. 20, 464–479 (1967) CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Davis, A.W.: Branching-diffusion processes with no absorbing boundaries, I. J. Math. Anal. Appl. 18, 276–296 (1967) CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Dudley, R.M.: Real Analysis and Probability. Cambridge University Press, Cambridge (2002) CrossRefMATHGoogle Scholar
  13. 13.
    Dynkin, E.B.: Superprocesses and partial differential equations. Ann. Probab. 21, 1185–1262 (1993) CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Dynkin, E.B., Kuznetsov, S.E.: \(\mathbb{N}\)-Measure for branching exit Markov system and their applications to differential equations. Probab. Theory Rel. Fields 130, 135–150 (2004) CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    El Karoui, N., Roelly, S.: Propriétés de martingales, explosion et représentation de Lévy-Khintchine d’une classe de processus de branchment à valeurs mesures. Stoch. Proc. Appl. 38, 239–266 (1991) CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Engländer, J.: Law of large numbers for superdiffusions: the non-ergodic case. Ann. Inst. H. Poincaré Probab. Statist. 45, 1–6 (2009) CrossRefMATHGoogle Scholar
  17. 17.
    Engländer, J., Harris, S.C., Kyprianou, A.E.: Strong law of large numbers for branching diffusions. Ann. Inst. H. Poincaré Probab. Statist. 46, 279–298 (2010) CrossRefMATHGoogle Scholar
  18. 18.
    Engländer, J., Winter, A.: Law of large numbers for a class of superdiffusions. Ann. Inst. H. Poincaré Probab. Statist. 42, 171–185 (2006) CrossRefMATHGoogle Scholar
  19. 19.
    Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher Transcendental Functions, vol. II. McGraw-Hill, New York (1953) MATHGoogle Scholar
  20. 20.
    Hardy, R., Harris, S.C.: A spine aproach to branching diffusions with applications to L p-convergence of martingales. In: Séminaire de Probabilités XLII. Lecture Notes in Math., vol. 1979, pp. 281–330 (2009) CrossRefGoogle Scholar
  21. 21.
    Kesten, H., Stigum, B.P.: A limit theorem for multidimensional Galton-Watson processes. Ann. Math. Statist. 37, 1211–1223 (1966) CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Kesten, H., Stigum, B.P.: Additional limit theorems for indecomposable multidimensional Galton-Watson processes. Ann. Math. Statist. 37, 1463–1481 (1966) CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Kyprianou, A.E.: Introductory Lectures on Fluctuations of Levy Processes with Applications. Springer, Berlin (2006) MATHGoogle Scholar
  24. 24.
    Li, Z.: Skew convolution semigroups and related immigration processes. Theory Probab. Appl. 46, 274–296 (2003) CrossRefMathSciNetGoogle Scholar
  25. 25.
    Li, Z.: Measure-Valued Branching Markov Processes. Springer, Heidelberg (2011) CrossRefMATHGoogle Scholar
  26. 26.
    Liu, R., Ren, Y.-X., Song, R.: LlogL criterion for a class of superdiffusions. J. Appl. Probab. 46, 479–496 (2009) CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Liu, R., Ren, Y.-X., Song, R.: Strong law of large numbers for a class of superdiffusions. Acta Appl. Math. 123, 73–97 (2013) CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Metafune, G., Pallara, D.: Spectrum of Ornstein-Uhlenbeck operators in \(\mathcal{L}^{p}\) spaces with respect to invariant measures. J. Funct. Anal. 196, 40–60 (2002) CrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    Miłoś, P.: Spatial CLT for the supercritical Ornstein-Uhlenbeck superprocess. Preprint (2012). arXiv:1203.6661
  30. 30.
    Ren, Y.-X., Song, R., Zhang, R.: Central limit theorems for supercritical branching Markov processes. Preprint (2013). arXiv:1305.0610
  31. 31.
    Watanabe, S.: Limit theorem for a class of branching processes. In: 1967 Markov Processes and Potential Theory, Madison, Wis., 1967. Proc. Sympos. Math. Res. Center, pp. 205–232. Wiley, New York (1967) Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.LMAM School of Mathematical Sciences & Center for Statistical SciencePeking UniversityBeijingP.R. China
  2. 2.Department of MathematicsUniversity of IllinoisUrbanaUSA
  3. 3.LMAM School of Mathematical SciencesPeking UniversityBeijingP.R. China

Personalised recommendations