Skip to main content
Log in

Central Limit Theorems for Super Ornstein-Uhlenbeck Processes

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

Suppose that X={X t :t≥0} is a supercritical super Ornstein-Uhlenbeck process, that is, a superprocess with an Ornstein-Uhlenbeck process on \(\mathbb{R}^{d}\) corresponding to \(L=\frac{1}{2}\sigma^{2}\Delta-b x\cdot\nabla\) as its underlying spatial motion and with branching mechanism ψ(λ)=−αλ+βλ 2+∫(0,+∞)(e λx−1+λx)n(dx), where α=−ψ′(0+)>0, β≥0, and n is a measure on (0,∞) such that ∫(0,+∞) x 2 n(dx)<+∞. Let \(\mathbb{P} _{\mu}\) be the law of X with initial measure μ. Then the process W t =e αtX t ∥ is a positive \(\mathbb{P} _{\mu}\)-martingale. Therefore there is W such that W t W , \(\mathbb{P} _{\mu}\)-a.s. as t→∞. In this paper we establish some spatial central limit theorems for X.

Let \(\mathcal{P}\) denote the function class

$$ \mathcal{P}:=\bigl\{f\in C\bigl(\mathbb{R}^d\bigr): \mbox{there exists } k\in\mathbb{N} \mbox{ such that }|f(x)|/\|x\|^k\to 0 \mbox{ as }\|x\|\to\infty \bigr\}. $$

For each \(f\in\mathcal{P}\) we define an integer γ(f) in term of the spectral decomposition of f. In the small branching rate case α<2γ(f)b, we prove that there is constant \(\sigma_{f}^{2}\in (0,\infty)\) such that, conditioned on no-extinction,

$$\begin{aligned} \biggl(e^{-\alpha t}\|X_t\|, ~\frac{\langle f , X_t\rangle}{\sqrt{\|X_t\|}} \biggr) \stackrel{d}{\rightarrow}\bigl(W^*,~G_1(f)\bigr), \quad t\to\infty, \end{aligned}$$

where W has the same distribution as W conditioned on no-extinction and \(G_{1}(f)\sim \mathcal{N}(0,\sigma_{f}^{2})\). Moreover, W and G 1(f) are independent. In the critical rate case α=2γ(f)b, we prove that there is constant \(\rho_{f}^{2}\in (0,\infty)\) such that, conditioned on no-extinction,

$$\begin{aligned} \biggl(e^{-\alpha t}\|X_t\|, ~\frac{\langle f , X_t\rangle}{t^{1/2}\sqrt{\|X_t\|}} \biggr) \stackrel{d}{\rightarrow}\bigl(W^*,~G_2(f)\bigr), \quad t\to\infty, \end{aligned}$$

where W has the same distribution as W conditioned on no-extinction and \(G_{2}(f)\sim \mathcal{N}(0, \rho_{f}^{2})\). Moreover W and G 2(f) are independent. We also establish two central limit theorems in the large branching rate case α>2γ(f)b.

Our central limit theorems in the small and critical branching rate cases sharpen the corresponding results in the recent preprint of Miłoś in that our limit normal random variables are non-degenerate. Our central limit theorems in the large branching rate case have no counterparts in the recent preprint of Miłoś. The main ideas for proving the central limit theorems are inspired by the arguments in K. Athreya’s 3 papers on central limit theorems for continuous time multi-type branching processes published in the late 1960’s and early 1970’s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adamczak, R., Miłoś, P.: CLT for Ornstein-Uhlenbeck branching particle system. Preprint (2011). arXiv:1111.4559

  2. Asmussen, S., Hering, H.: Strong limit theorems for general supercritical branching processes with applications to branching diffusions. Z. Wahrs. Verw. Gebiete 36(3), 195–212 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  3. Asmussen, S., Hering, H.: Strong limit theorems for supercritical immigration branching processes. Math. Scand. 39(2), 327–342 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  4. Asmussen, S., Hering, H.: Branching Processes. Birkhäuser, Boston (1983)

    Book  MATH  Google Scholar 

  5. Asmussen, S., Keiding, N.: Martingale central limit theorems and asymptotic estimation theory for multitype branching processes. Adv. Appl. Probab. 10, 109–129 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  6. Athreya, K.B.: Limit theorems for multitype continuous time Markov branching processes I: The case of an eigenvector linear functional. Z. Wahrs. Verw. Gebiete 12, 320–332 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  7. Athreya, K.B.: Limit theorems for multitype continuous time Markov branching processes II: The case of an arbitrary linear functional. Z. Wahrs. Verw. Gebiete 13, 204–214 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  8. Athreya, K.B.: Some refinements in the theory of supercritical multitype Markov branching processes. Z. Wahrs. Verw. Gebiete 20, 47–57 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  9. Berestycki, J., Kyprianou, A.E., Murillo-Salas, A.: The prolific backbone for supercritical superprocesses. Stoch. Proc. Appl. 121, 1315–1331 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. Conner, H.E.: Asymptotic behavior of averaging processes for a branching process of restricted Brownian particles. J. Math. Anal. Appl. 20, 464–479 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  11. Davis, A.W.: Branching-diffusion processes with no absorbing boundaries, I. J. Math. Anal. Appl. 18, 276–296 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  12. Dudley, R.M.: Real Analysis and Probability. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  13. Dynkin, E.B.: Superprocesses and partial differential equations. Ann. Probab. 21, 1185–1262 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  14. Dynkin, E.B., Kuznetsov, S.E.: \(\mathbb{N}\)-Measure for branching exit Markov system and their applications to differential equations. Probab. Theory Rel. Fields 130, 135–150 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. El Karoui, N., Roelly, S.: Propriétés de martingales, explosion et représentation de Lévy-Khintchine d’une classe de processus de branchment à valeurs mesures. Stoch. Proc. Appl. 38, 239–266 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  16. Engländer, J.: Law of large numbers for superdiffusions: the non-ergodic case. Ann. Inst. H. Poincaré Probab. Statist. 45, 1–6 (2009)

    Article  MATH  Google Scholar 

  17. Engländer, J., Harris, S.C., Kyprianou, A.E.: Strong law of large numbers for branching diffusions. Ann. Inst. H. Poincaré Probab. Statist. 46, 279–298 (2010)

    Article  MATH  Google Scholar 

  18. Engländer, J., Winter, A.: Law of large numbers for a class of superdiffusions. Ann. Inst. H. Poincaré Probab. Statist. 42, 171–185 (2006)

    Article  MATH  Google Scholar 

  19. Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher Transcendental Functions, vol. II. McGraw-Hill, New York (1953)

    MATH  Google Scholar 

  20. Hardy, R., Harris, S.C.: A spine aproach to branching diffusions with applications to L p-convergence of martingales. In: Séminaire de Probabilités XLII. Lecture Notes in Math., vol. 1979, pp. 281–330 (2009)

    Chapter  Google Scholar 

  21. Kesten, H., Stigum, B.P.: A limit theorem for multidimensional Galton-Watson processes. Ann. Math. Statist. 37, 1211–1223 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  22. Kesten, H., Stigum, B.P.: Additional limit theorems for indecomposable multidimensional Galton-Watson processes. Ann. Math. Statist. 37, 1463–1481 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  23. Kyprianou, A.E.: Introductory Lectures on Fluctuations of Levy Processes with Applications. Springer, Berlin (2006)

    MATH  Google Scholar 

  24. Li, Z.: Skew convolution semigroups and related immigration processes. Theory Probab. Appl. 46, 274–296 (2003)

    Article  MathSciNet  Google Scholar 

  25. Li, Z.: Measure-Valued Branching Markov Processes. Springer, Heidelberg (2011)

    Book  MATH  Google Scholar 

  26. Liu, R., Ren, Y.-X., Song, R.: LlogL criterion for a class of superdiffusions. J. Appl. Probab. 46, 479–496 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  27. Liu, R., Ren, Y.-X., Song, R.: Strong law of large numbers for a class of superdiffusions. Acta Appl. Math. 123, 73–97 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  28. Metafune, G., Pallara, D.: Spectrum of Ornstein-Uhlenbeck operators in \(\mathcal{L}^{p}\) spaces with respect to invariant measures. J. Funct. Anal. 196, 40–60 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  29. Miłoś, P.: Spatial CLT for the supercritical Ornstein-Uhlenbeck superprocess. Preprint (2012). arXiv:1203.6661

  30. Ren, Y.-X., Song, R., Zhang, R.: Central limit theorems for supercritical branching Markov processes. Preprint (2013). arXiv:1305.0610

  31. Watanabe, S.: Limit theorem for a class of branching processes. In: 1967 Markov Processes and Potential Theory, Madison, Wis., 1967. Proc. Sympos. Math. Res. Center, pp. 205–232. Wiley, New York (1967)

    Google Scholar 

Download references

Acknowledgements

We thank Zenghu Li and the two referees for helpful comments on the first version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Zhang.

Additional information

Y.-X. Ren research was supported by NSFC (Grant No. 10871103 and 10971003) and Specialized Research Fund for the Doctoral Program of Higher Education.

R. Song research was supported in part by a grant from the Simons Foundation (208236).

R. Zhang was supported by the China Scholarship Council.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, YX., Song, R. & Zhang, R. Central Limit Theorems for Super Ornstein-Uhlenbeck Processes. Acta Appl Math 130, 9–49 (2014). https://doi.org/10.1007/s10440-013-9837-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-013-9837-0

Keywords

Mathematics Subject Classification (2000)

Navigation