# A Capped Optimal Stopping Problem for the Maximum Process

- 174 Downloads
- 5 Citations

## Abstract

This paper concerns an optimal stopping problem driven by the running maximum of a spectrally negative Lévy process *X*. More precisely, we are interested in capped versions of the American lookback optimal stopping problem (Gapeev in J. Appl. Probab. 44:713–731, 2007; Guo and Shepp in J. Appl. Probab. 38:647–658, 2001; Pedersen in J. Appl. Probab. 37:972–983, 2000), which has its origins in mathematical finance, and provide semi-explicit solutions in terms of scale functions. The optimal stopping boundary is characterised by an ordinary first-order differential equation involving scale functions and, in particular, changes according to the path variation of *X*. Furthermore, we will link these capped problems to Peskir’s maximality principle (Peskir in Ann. Probab. 26:1614–1640, 1998).

## Keywords

Optimal stopping Optimal stopping boundary Principle of smooth fit Principle of continuous fit Lévy processes Scale functions## Mathematics Subject Classification

60G40 60G51 60J75## References

- 1.Alili, L., Kyprianou, A.E.: Some remarks of first passage of Lévy processes, the American put and pasting principles. Ann. Appl. Probab.
**15**, 2062–2080 (2005) CrossRefMATHMathSciNetGoogle Scholar - 2.Avram, F., Kyprianou, A.E., Pistorius, M.R.: Exit problems for spectrally negative Lévy processes and applications to (Canadized) Russian options. Ann. Appl. Probab.
**14**, 215–238 (2004) CrossRefMATHMathSciNetGoogle Scholar - 3.Bertoin, J.: Lévy Processes. Cambridge University Press, Cambridge (1996) MATHGoogle Scholar
- 4.Bichteler, K.: Stochastic Integration with Jumps. Cambridge University Press, Cambridge (2002) CrossRefMATHGoogle Scholar
- 5.Carr, P., Wu, L.: The finite moment log stable process and option pricing. J. Finance
**58**, 753–778 (2003) CrossRefGoogle Scholar - 6.Chan, T.: Pricing contingent claims on stocks driven by Lévy processes. Ann. Appl. Probab.
**9**, 504–528 (1999) CrossRefMATHMathSciNetGoogle Scholar - 7.Conze, A., Viswanathan, R.: Path dependent options: the case of lookback options. J. Finance
**46**, 1893–1907 (1991) CrossRefGoogle Scholar - 8.Cox, A.M.G., Hobson, D., Obłój, J.: Pathwise inequalities for local time: applications to Skorohod embeddings and optimal stopping. Ann. Appl. Probab.
**18**, 1870–1896 (2008) CrossRefMATHMathSciNetGoogle Scholar - 9.Gapeev, P.V.: Discounted optimal stopping for maxima of some jump-diffusion processes. J. Appl. Probab.
**44**, 713–731 (2007) CrossRefMATHMathSciNetGoogle Scholar - 10.Guo, X., Shepp, L.: Some optimal stopping problems with nontrivial boundaries for pricing exotic options. J. Appl. Probab.
**38**, 647–658 (2001) CrossRefMATHMathSciNetGoogle Scholar - 11.Hartman, P.: Ordinary Differential Equations. Birkäuser, Basel (1982) MATHGoogle Scholar
- 12.Kuznetsov, A., Kyprianou, A.E., Rivero, V.: The theory of scale functions for spectrally negative Lévy processes (2011). arXiv:1104.1280v1 [math.PR]
- 13.Kyprianou, A.E.: Introductory Lectures on Fluctuations of Lévy Processes with Applications. Springer, Berlin (2006) MATHGoogle Scholar
- 14.Kyprianou, A.E., Ott, C.: Spectrally negative Lévy processes perturbed by functionals of their running supremum. J. Appl. Probab.
**49**, 1005–1014 (2012) CrossRefMATHMathSciNetGoogle Scholar - 15.Madan, D.B., Schoutens, W.: Break on through to the single side. J. Credit Risk
**4**(3), 3–20 (2008) Google Scholar - 16.Merton, R.C.: Lifetime portfolio selection under uncertainty: the continuous-time case. Rev. Econ. Stat.
**1**, 247–257 (1969) CrossRefGoogle Scholar - 17.Mikalevich, V.S.: Bayesian choice between two hypotheses for the mean value of a normal process. Visn. Kiiv. Univ. Ser. Fiz.-Mat. Nauki
**1**, 101–104 (1958) Google Scholar - 18.Ott, C.: Optimal stopping problems for the maximum process with upper and lower caps. Ann. Appl. Probab. (2011, to appear) Google Scholar
- 19.Pedersen, J.L.: Discounted optimal stopping problems for the maximum process. J. Appl. Probab.
**37**, 972–983 (2000) CrossRefMATHMathSciNetGoogle Scholar - 20.Peskir, G.: Optimal stopping of the maximum process: the maximality principle. Ann. Probab.
**26**, 1614–1640 (1998) CrossRefMATHMathSciNetGoogle Scholar - 21.Peskir, G., Shiryaev, A.: Sequential testing problems for Poisson processes. Ann. Stat.
**28**, 837–859 (2000) CrossRefMATHMathSciNetGoogle Scholar - 22.Peskir, G., Shiryaev, A: Optimal Stopping and Free-Boundary Problems. Birkhäuser, Basel (2006) MATHGoogle Scholar
- 23.Pistorius, M.R.: On exit and ergodicity of the spectrally one-sided Lévy process reflected at its infimum. J. Theor. Probab.
**17**, 183–220 (2004) CrossRefMATHMathSciNetGoogle Scholar - 24.Protter, P.E.: Stochastic Integration and Differential Equations, 2nd edn. Springer, Berlin (2005) CrossRefGoogle Scholar
- 25.Shepp, L.A., Shiryaev, A.N.: The Russian option: reduced regret. Ann. Appl. Probab.
**3**, 631–640 (1993) CrossRefMATHMathSciNetGoogle Scholar - 26.Shepp, L.A., Shiryaev, A.N.: A new look at pricing of the “Russian option”. Theory Probab. Appl.
**39**, 103–119 (1993) CrossRefMathSciNetGoogle Scholar - 27.Shiryaev, A.N.: Essentials of Stochastic Finance. World Scientific, London (1999) MATHGoogle Scholar
- 28.Shiryaev, A.N.: Optimal Stopping Rules. Springer, Berlin (2008). Reprint MATHGoogle Scholar