Acta Applicandae Mathematicae

, Volume 124, Issue 1, pp 123–170 | Cite as

Symmetry Classification of Third-Order Nonlinear Evolution Equations. Part I: Semi-simple Algebras

  • P. Basarab-HorwathEmail author
  • F. Güngör
  • V. Lahno


We give a complete point-symmetry classification of all third-order evolution equations of the form u t =F(t,x,u,u x ,u xx )u xxx +G(t,x,u,u x ,u xx ) which admit semi-simple symmetry algebras and extensions of these semi-simple Lie algebras by solvable Lie algebras. The methods we employ are extensions and refinements of previous techniques which have been used in such classifications.


Symmetries Lie algebras Equivalence group Semi-simple Lie algebras Solvable Lie algebras 



V. Lahno was partially supported by the Swedish Research Council (grant number 624-2004-1073). The research of F. Güngör was supported by the Research Council of Turkey (TÜBİTAK).

Faruk Güngör and Peter Basarab-Horwath wish to acknowledge the great debt they owe to Viktor Lahno, for his friendship, mathematical insights and patient collaboration over the years. Viktor died on June 5th 2011, while we were preparing this article for submission. We shall miss him greatly.


  1. 1.
    Zhdanov, R.Z., Lahno, V.I.: Group classification of heat conductivity equations with a nonlinear source. J. Phys. A, Math. Gen. 32, 7405–7418 (1999). math-ph/0005013 MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Basarab-Horwath, P., Lahno, V., Zhdanov, R.: The structure of Lie algebras and the classification problem for partial differential equations. Acta Appl. Math. 69, 43–94 (2001). math-ph/0005013 MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Zhdanov, R.Z., Lahno, V.I., Fushchych, W.I.: On covariant realizations of the Euclid group. Commun. Math. Phys. 212, 535–556 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Güngör, F., Lahno, V., Zhdanov, R.: Symmetry classification of KdV-type nonlinear evolution equations. J. Math. Phys. 45, 2280–2313 (2004). math-ph/0005013 MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Lahno, V., Zhdanov, R.: Group classification of nonlinear wave equations. J. Math. Phys. 46, 1–37 (2005) MathSciNetCrossRefGoogle Scholar
  6. 6.
    Zhdanov, R., Lahno, V.: Group classification of the general second-order evolution equation: semi-simple invariance groups. J. Phys. A, Math. Theor. 40, 5083–5103 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Gazeau, J.P., Winternitz, P.: Symmetries of variable coefficient Korteweg-de Vries equations. J. Math. Phys. 33(12), 4087–4102 (1992) MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Güngör, F., Sanielevici, M., Winternitz, P.: On the integrability properties of variable coefficient Korteweg-de Vries equations. Can. J. Phys. 74, 676–684 (1996) CrossRefGoogle Scholar
  9. 9.
    Basarab-Horwath, P., Güngör, F., Lahno, V.: The symmetry classification of third-order nonlinear evolution equations. Part II: Solvable Lie algebras (In preparation) Google Scholar
  10. 10.
    Leo, M., Leo, R.A., Soliani, G., Solombrino, L.: Lie-Baecklund symmetries for the Harry-Dym equation. Phys. Rev. D, 1406–1408 (1983) Google Scholar
  11. 11.
    Kingston, J.G.: On point transformations of evolution equations. J. Phys. A 24, L769–L774 (1991) MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Kingston, J.G., Sophocleous, C.: On form-preserving point transformations of partial differential equations. J. Phys. A 31, 1597–1619 (1998) MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Ibragimov, N., Anderson, I.: Lie-Bäcklund Transformations in Applications. SIAM Studies in Mathematics. SIAM, Philadelphia (1983) Google Scholar
  14. 14.
    Asano, N., Kato, Y.: Algebraic and Spectral Methods for Nonlinear Wave Equations. Longman, Harlow (1990) zbMATHGoogle Scholar
  15. 15.
    Morozov, V.V.: Classification of six dimensional nilpotent Lie algebras. Izv. Vysš. Učebn. Zaved. 5, 161–171 (1958) (in Russian) Google Scholar
  16. 16.
    Mubarakzyanov, G.M.: On solvable Lie algebras. Izv. Vysš. Učebn. Zaved. 32, 114–123 (1963) (in Russian) Google Scholar
  17. 17.
    Mubarakzyanov, G.M.: The classification of the real structure of five-dimensional Lie algebras. Izv. Vysš. Učebn. Zaved. 34, 99–105 (1963) (in Russian) Google Scholar
  18. 18.
    Mubarakzyanov, G.M.: The classification of six-dimensional Lie algebras with one nilpotent basis element. Izv. Vysš. Učebn. Zaved. 35, 104–116 (1963) (in Russian) Google Scholar
  19. 19.
    Mubarakzyanov, G.M.: Some theorems on solvable Lie algebras. Izv. Vysš. Učebn. Zaved. 55, 95–98 (1966) (in Russian) Google Scholar
  20. 20.
    Turkowski, P.: Low-dimensional real Lie algebras. J. Math. Phys. 29, 2139–2144 (1988) MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Turkowski, P.: Solvable Lie algebras of dimension six. J. Math. Phys. 31, 1344–1350 (1990) MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Varadarajan, V.S.: Lie Groups, Lie Algebras, and Their Representations. Graduate Texts in Mathematics, vol. 102. Springer, Berlin (1984) zbMATHGoogle Scholar
  23. 23.
    Krasil’shchik, I.S., Vinogradov, A.M.: Symmetries and Conservation Laws for Differential Equations of Mathematical Physics. AMS Translations of Mathematical Monographs, vol. 182 (1999) zbMATHGoogle Scholar
  24. 24.
    Takens, F.: A global version of the inverse problem of the calculus of variations. J. Differ. Geom. 14, 543–562 (1979) MathSciNetzbMATHGoogle Scholar
  25. 25.
    Fatibene, L., Francaviglia, M.: Natural and Gauge Natural Formalism for Classical Field Theories. Kluwer, Dordrecht (2003) zbMATHGoogle Scholar
  26. 26.
    Olver, P.J.: Applications of Lie Groups to Differential Equations. Springer, New York (1991) Google Scholar
  27. 27.
    Sternberg, S.: Differential Geometry. Chelsea Publishing Company, New York (1983) zbMATHGoogle Scholar
  28. 28.
    Vaisman, I.: Lectures on the Geometry of Poisson Manifolds. Progress in Mathematics, vol. 118. Birkhäuser, Basel (1994) zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of MathematicsLinköping UniversityLinköpingSweden
  2. 2.Department of Mathematics, Faculty of Arts and SciencesDoğuş UniversityIstanbulTurkey
  3. 3.Department of MathematicsPedagogical UniversityPoltavaUkraine

Personalised recommendations