Acta Applicandae Mathematicae

, Volume 123, Issue 1, pp 99–112 | Cite as

Regularity Issue of the Navier-Stokes Equations Involving the Combination of Pressure and Velocity Field

Article

Abstract

We establish some regularity criteria for the incompressible Navier-Stokes equations in a bounded three-dimensional domain concerning the quotients of the pressure, the velocity field and the pressure gradient.

Keywords

Navier-Stokes equations Regularity criterion A priori estimates 

Mathematics Subject Classification

35B45 35B65 76D05 

References

  1. 1.
    Beirão da Veiga, H.: A new regularity class for the Navier-Stokes equations in ℝn. Chin. Ann. Math., Ser. B 16, 407–412 (1995) MATHGoogle Scholar
  2. 2.
    Beirão da Veiga, H.: A sufficient condition on the pressure for the regularity of weak solutions to the Navier-Stokes equations. J. Math. Fluid Mech. 2, 99–106 (2000) MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Berselli, L.C., Galdi, G.P.: Regularity criteria involving the pressure for the weak solutions to the Navier-Stokes equations. Proc. Am. Math. Soc. 130, 3585–3595 (2002) MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Caffarelli, L., Kohn, R., Nirenberg, L.: Partial regularity of suitable weak solutions of the Navier-Stokes equations. Commun. Pure Appl. Math. 35, 771–831 (1982) MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Chae, D., Choe, H.-J.: On the regularity criterion for the solutions of the Navier-Stokes equations. Electron. J. Differ. Equ. 1999, 1–7 (1999) MathSciNetCrossRefGoogle Scholar
  6. 6.
    Cao, C., Titi, E.S.: Regularity criteria for the three dimensional Navier-Stokes equations. Indiana Univ. Math. J. 57, 2643–2661 (2008) MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Cao, C., Qin, J.L., Titi, E.S.: Regularity criterion for solutions of three-dimensional turbulent channel flows. Commun. Partial Differ. Equ. 33, 419–428 (2008) MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Fan, J., Jiang, S., Nakamura, G., Zhou, Y.: Logarithmically improved regularity criteria for the Navier-Stokes and MHD equations. J. Math. Fluid Mech. 13, 557–571 (2011) MathSciNetCrossRefGoogle Scholar
  9. 9.
    Giga, Y.: Solutions for semilinear parabolic equations in L p and regularity of weak solutions of the Navier-Stokes system. J. Differ. Equ. 62, 186–212 (1986) MathSciNetCrossRefGoogle Scholar
  10. 10.
    Guo, Z., Gala, S.: A note on the regularity criteria for the Navier-Stokes equations. Appl. Math. Lett. 25, 305–309 (2012) MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Guo, Z., Gala, S.: Remarks on logarithmical regularity criteria for the Navier-Stokes equations. J. Math. Phys. 52, 063503 (2011) MathSciNetCrossRefGoogle Scholar
  12. 12.
    Hopf, E.: Über die Anfangwertaufgaben für die hydromischen Grundgleichungen. Math. Nachr. 4, 213–321 (1951) MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Iwashita, H.: L q-L r estimates for solutions of the nonstationary Stokes equations in an exterior domain and the Navier-Stokes initial value problems in L q spaces. Math. Ann. 285, 265–288 (1989) MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Kyungkeun, K., Lee, J.: On regularity criteria in conjunction with the pressure of Navier-Stokes equations. Int. Math. Res. Not., 80762 (2006) Google Scholar
  15. 15.
    Kyungkeun, K., Lee, J.: Erratum: on regularity criteria in conjunction with the pressure of the Navier-Stokes equations. Int. Math. Res. Not. 9, 1772–1774 (2010). doi:10.1093/imrn/rnq073 Google Scholar
  16. 16.
    Kato, T.: Strong L p-solutions to the Navier-Stokes equations in ℝm, with applications to weak solutions. Math. Z. 187, 471–480 (1984) MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Kozono, H., Sohr, H.: Regularity criterion on weak solutions to the Navier-Stokes equations. Adv. Differ. Equ. 2, 535–554 (1997) MathSciNetMATHGoogle Scholar
  18. 18.
    Kozono, H., Taniuchi, Y.: Bilinear estimates in BMO and the Navier-Stokes equations. Math. Z. 235, 173–194 (2000) MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Kozono, H.: Global L n-solution and its decay property for the Navier-Stokes equations in half space \(R_{+}^{n}\). J. Differ. Equ. 79, 79–88 (1989) MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Leray, J.: Étude de divers équations intégrales nonlinearies et de quelques problemes que posent lhydrodinamique. J. Math. Pures Appl. 12, 1–82 (1931) MathSciNetGoogle Scholar
  21. 21.
    Núñez, M.: Regularity criteria for the Navier-Stokes equations involving the ratio pressure-gradient of velocity. Math. Methods Appl. Sci. 33, 323–331 (2010) MathSciNetMATHGoogle Scholar
  22. 22.
    Penel, P., Pokorný, M.: Some new regularity criteria for the Navier-Stokes equations containing gradient of velocity. Appl. Math. 5, 483–493 (2004) CrossRefGoogle Scholar
  23. 23.
    Scheffer, V.: Partial regularity of solutions to the Navier-Stokes equations. Pac. J. Math. 66, 535–552 (1976) MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Serrin, J.: On the interior regularity of weak solutions of the Navier-Stokes equations. Arch. Ration. Mech. Anal. 9, 187–195 (1962) MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Struwe, M.: On partial regularity results for the Navier-Stokes equations. Commun. Pure Appl. Math. 41, 437–458 (1988) MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Tian, G., Xin, Z.: Gradient estimation on Navier-Stokes equations. Commun. Anal. Geom. 7, 221–257 (1999) MathSciNetMATHGoogle Scholar
  27. 27.
    von Wahl, W.: Regularity of weak solutions of the Navier-Stokes equations. In: Proceedings of the 1983 Summer Institute on Nonlinear Functional Analysis and Applications. Proc. Symposia in Pure Mathematics, vol. 45, pp. 497–503. Am. Math. Soc., Providence (1989) Google Scholar
  28. 28.
    Zhou, Y.: On regularity criteria in terms of pressure for the Navier-Stokes equations in ℝ3. Proc. Am. Math. Soc. 134, 149–156 (2006) MATHCrossRefGoogle Scholar
  29. 29.
    Zhou, Y.: A new regularity criterion for the Navier-Stokes equations in terms of the gradient of one velocity component. Methods Appl. Anal. 9, 563–578 (2002) MathSciNetMATHGoogle Scholar
  30. 30.
    Zhou, Y.: A new regularity criterion for weak solutions to the Navier-Stokes equations. J. Math. Pures Appl. 84, 1496–1514 (2005) MathSciNetMATHGoogle Scholar
  31. 31.
    Zhou, Y.: Regularity criteria in terms of pressure for the 3-D Navier-Stokes equations in a generic domain. Math. Ann. 328, 173–192 (2004) MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Zhou, Y.: On a regularity criterion in terms of the gradient of pressure for the Navier-Stokes equations in ℝN. Z. Angew. Math. Phys. 57, 384–392 (2006) MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Zhou, Y., Pokorný, M.: On a regularity criterion for the Navier-Stokes equations involving gradient of one velocity component. J. Math. Phys. 50, 123514 (2009) MathSciNetCrossRefGoogle Scholar
  34. 34.
    Zhou, Y., Pokorný, M.: On the regularity of the solutions of the Navier-Stokes equations via one velocity component. Nonlinearity 23, 1097–1107 (2010) MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.College of Mathematics and Information ScienceWenzhou UniversityZhejiangP.R. China
  2. 2.Département de Physique ThéoriqueUniversité de GenèveGenèveSwitzerland

Personalised recommendations