Skip to main content
Log in

Efficient Numerical Methods for an Anisotropic, Nonisothermal, Two-Phase Transport Model of Proton Exchange Membrane Fuel Cell

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

We carry out model and numerical studies for a three-dimensional, anisotropic, nonisothermal, two-phase steady state transport model of proton exchange membrane fuel cell (PEMFC) in this paper. Besides fully addressing the conservation equations of mass, momentum, species, charge and energy equations arising in the PEMFC, we present some efficient numerical methods for this model to achieve a fast and convergent nonlinear iteration, comparing to the oscillatory and nonconvergent iteration conducted by commercial flow solvers or in-house codes with standard finite element/volume method. In a framework of a combined finite element-upwind finite volume method, Kirchhoff transformation plays an important role in dealing with the discontinuous and degenerate water diffusivity in its transport equation. Preconditioned GMRES solver together with Newton’s linearization scheme make the entire numerical simulation more efficient. Three-dimensional numerical simulations demonstrate that the convergent physical solutions can be attained within 30 steps. Numerical convergence tests are also performed to verify the efficiency and accuracy of the presented numerical algorithms and techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alt, H., Luckhaus, S.: Quasilinear elliptic-parabolic differential equations. Math. Z. 183, 311–341 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arbogast, T., Wheeler, M., Zhang, N.: A nonlinear mixed finite element method for a degenerate parabolic equation arising in flow in porous media. SIAM J. Numer. Anal. 33, 1669–1687 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barrett, R., Berry, M., Chan, T.F., Demmel, J., Donato, J.M., Dongarra, J., Eijkhout, V., Pozo, R., Romine, C., der Vorst, H.V.: Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. Society for Industrial and Applied Mathematics, Philadelphia (1994)

    Book  Google Scholar 

  4. Brezzi, F., Pitkaranta, J.: On the stabilization of finite element approximations of Stokes problem. In: Efficient Solutions of Elliptic Systems. Notes on Numerical Fluid Mechanics, vol. 10, pp. 11–19. Viewig, Braunschweig (1984)

    Google Scholar 

  5. Costamagna, P., Srinivasan, S.: Quantum jumps in the pemfc science and technology from the 1960s to the year 2000: Part I. Fundamental scientific aspects. J. Power Sources 102, 242–252 (2001)

    Article  Google Scholar 

  6. Costamagna, P., Srinivasan, S.: Quantum jumps in the pemfc science and technology from the 1960s to the year 2000: Part II. Engineering, technology development and application aspects. J. Power Sources 102, 253–269 (2001)

    Article  Google Scholar 

  7. Crank, J.: Free and Moving Boundary Problems. Clarendon Press, Oxford (1984)

    MATH  Google Scholar 

  8. Elman, H., Silvester, D.: Fast nonsymmetric iterations and preconditioning for Navier-Stokes equations. SIAM J. Sci. Comput. 17, 33–46 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ewing, R.E., Iliev, O.P., Lazarov, R.D.: Numerical simulation of contamination transport due to flow in liquid and porous media. Tech. Report 1992-10, Enhanced Oil Recovery Institute, University of Wyoming (1992)

  10. Eyres, N., Hartree, D., Ingham, J., Jackson, R., Sarjant, R., Wagstaff, S.: The calculation of variable heat flow in solids. Philos. Trans. R. Soc. Lond. A 240, 1–57 (1946)

    Article  MathSciNet  MATH  Google Scholar 

  11. Feistauer, M., Felcman, J., Lukáčová-Medvid’ová, M., Warnecke, G.: Error estimates for a combined finite volume-finite element method for nonlinear convection-diffusion problems. SIAM J. Numer. Anal. 36, 1528–1548 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hughes, T.J.R., Franca, L.P., Balestra, M.: A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuska-Brezzi condition: A stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations. Comput. Methods Appl. Mech. Eng. 59, 85–99 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kay, D., Loghin, D., Wathen, A.: A preconditioner for the steady-state Navier-Stokes equations. SIAM J. Sci. Comput. 24, 237–256 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kladias, N., Prasad, V.: Experimental verification of Darcy-Brinkman-Forchheimer flow model for natural convection in porous media. J. Thermophys. Heat Transf. 5, 560–576 (1991)

    Article  Google Scholar 

  15. Klawonn, A., Starke, G.: Block triangular preconditioners for nonsymmetric saddle point problems: Field-of-values analysis. Numer. Math. 81, 577–594 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Larminie, J., Dicks, A.: Fuel Cell Systems Explained, 2nd edn. Wiley, New York (2003)

    Google Scholar 

  17. Liu, F.Q., Lu, G.Q., Wang, C.Y.: Low crossover of methanol and water through thin membranes in direct methanol fuel cells. J. Electrochem. Soc. 153, A543–553 (2006)

    Article  Google Scholar 

  18. Liu, F.Q., Wang, C.Y.: Optimization of cathode catalyst layer for direct methanol fuel cells: Part I. Experimental investigation. Electrochim. Acta 52, 1417–1425 (2006)

    Article  Google Scholar 

  19. Liu, F.Q., Wang, C.Y.: Optimization of cathode catalyst layer for direct methanol fuel cells: Part II. Computational modeling and design. Electrochim. Acta 52, 1409–1416 (2006)

    Article  Google Scholar 

  20. Liu, F.Q., Wang, C.Y.: Mixed potential in a direct methanol fuel cell—modeling and experiments. J. Electrochem. Soc. 154, B514–B522 (2007)

    Article  Google Scholar 

  21. Liu, W., Wang, C.Y.: Modeling water transport in liquid feed direct methanol fuel cells. J. Power Sources 164, 189–195 (2007)

    Article  Google Scholar 

  22. Liu, W., Wang, C.Y.: Three-dimensional simulations of liquid feed direct methanol fuel cells. J. Electrochem. Soc. 154, B352–B361 (2007)

    Article  Google Scholar 

  23. Loghin, D., Wathen, A.J.: Analysis of preconditioners for saddle-point problems. SIAM J. Sci. Comput. 25, 2029–2049 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lu, G.Q., Wang, C.Y.: Electrochemical and flow characterization of a direct methanol fuel cell. J. Power Sources 134, 33–40 (2004)

    Article  Google Scholar 

  25. Nam, J.H., Kaviany, M.: Effective diffusivity and water-saturation distribution in single- and two-layer pemfc diffusion medium. Int. J. Heat Mass Transf. 46, 4595–4611 (2003)

    Article  Google Scholar 

  26. Pasaogullari, U., Wang, C.Y.: Liquid water transport in gas diffusion layer of polymer electrolyte fuel cells. J. Electrochem. Soc. 151, A399–A406 (2004)

    Article  Google Scholar 

  27. Pasaogullari, U., Wang, C.Y.: Two-phase modeling and flooding prediction of polymer electrolyte fuel cells. J. Electrochem. Soc. 152, A380–A390 (2005)

    Article  Google Scholar 

  28. Pasaogullari, U., Mukherjee, P., Wang, C.Y., Chen, K.: Anisotropic heat and water transport in a pefc cathode gas diffusion layer. J. Electrochem. Soc. 154, B823–B834 (2007)

    Article  Google Scholar 

  29. Rose, M.: Numerical methods for flows through porous media. I. Math. Comput. 40, 435–467 (1983)

    Article  MATH  Google Scholar 

  30. Silvester, D., Elman, H., Kay, D., Wathen, A.: Efficient preconditioning of the linearized Navier-Stokes equations for incompressible flow. J. Comput. Appl. Math. 128, 261–279 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sun, P.T., Xue, G., Wang, C.Y., Xu, J.C.: A combined finite element-upwind finite volume-Newton’s method for liquid feed direct methanol fuel cell simulations. In: Proceedings of the ASME 6th International Fuel Cell Science, Engineering and Technology Conference, Denver, 2008, pp. 851–864. ASME, New York (2008)

    Chapter  Google Scholar 

  32. Sun, P.T., Xue, G., Wang, C.Y., Xu, J.C.: A domain decomposition method for two-phase transport model in the cathode of a polymer electrolyte fuel cell. J. Comput. Phys. 228, 6016–6036 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sun, P.T., Xue, G., Wang, C.Y., Xu, J.C.: Fast numerical simulation of two-phase transport model in the cathode of a polymer electrolyte fuel cell. Commun. Comput. Phys. 6, 49–71 (2009)

    Article  Google Scholar 

  34. Sun, P.T., Xue, G., Wang, C.Y., Xu, J.C.: New numerical techniques for a liquid feed 3d full direct methanol fuel cell model. SIAM J. Appl. Math. 70, 600–620 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. Sun, P.T., Wang, C.Y., Xu, J.C.: A combined finite element-upwind finite volume method for liquid-feed direct methanol fuel cell simulations. J. Fuel Cell Sci. Technol. 7, 04101-01–04101-014 (2010)

    Article  Google Scholar 

  36. Sun, P., Zhou, S., Hu, Q., Liang, G.: Numerical study of a 3d two-phase pem fuel cell model via a novel automated finite element/finite volume program. Commun. Comput. Phys. 11, 65–98 (2012)

    Google Scholar 

  37. Tezduyar, T.E.: Stabilized finite element formulations for incompressible flow computations. Adv. Appl. Mech. 28, 1–44 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wang, C.Y.: Fundamental models for fuel cell engineering. Chem. Rev. 104, 4727–4766 (2004)

    Article  Google Scholar 

  39. Wang, Y.: Modeling of two-phase transport in the diffusion media of polymer electrolyte fuel cells. J. Power Sources 185, 261–271 (2008)

    Article  Google Scholar 

  40. Wang, C.Y., Cheng, P.: A multiphase mixture model for multiphase, multicomponent transport in capillary porous media—I: Model development. Int. J. Heat Mass Transf. 39, 3607–3618 (1996)

    Article  Google Scholar 

  41. Wang, C.Y., Cheng, P.: Multiphase flow and heat transfer in porous media. Adv. Heat Transf. 30, 93–196 (1997)

    Article  Google Scholar 

  42. Wang, Z.H., Wang, C.Y.: Mathematical modeling of liquid-feed direct methanol fuel cells. J. Electrochem. Soc. 150, A508–A519 (2003)

    Article  Google Scholar 

  43. Wang, Y., Wang, C.: Modeling polymer electrolyte fuel cells with large density and velocity changes. J. Electrochem. Soc. 152, A445–A453 (2005)

    Article  Google Scholar 

  44. Wang, Y., Wang, C.Y.: A nonisothermal two-phase model for polymer electrolyte fuel cells. J. Electrochem. Soc. 153, A1193–A1200 (2006)

    Article  Google Scholar 

  45. Wang, C.Y., Wang, Z.H., Pan, Y.: Two-phase transport in proton exchange membrane fuel cells. In: Proc. of Int. Mech Engr Congress & Exhibits, Nashville, TN (1999)

    Google Scholar 

  46. Wang, Z., Wang, C.Y., Chen, K.S.: Two-phase flow and transport in the air cathode of proton exchange membrane fuel cells. J. Power Sources 94, 40–50 (2001)

    Article  Google Scholar 

  47. Wang, Y., Wang, C., Chen, K.: Elucidating differences between carbon paper and carbon cloth in polymer electrolyte fuel cells. Electrochim. Acta 52, 3965–3975 (2007)

    Article  Google Scholar 

  48. Wilkison, D., St-Pierre, J.: Durability. In: Handbook of Fuel Cells: Fundamentals, Technology and Applications, vol. 3. Wiley, New York (2003)

    Google Scholar 

  49. Woodward, C., Dawson, C.: Analysis of expanded mixed finite element methods for a nonlinear parabolic equation modeling flow into variably saturated porous media. Texas Inst. Comp. Appl. Math. University of Texas at Austin, TIACM Report, 96-51 (1996)

Download references

Acknowledgements

This work was supported by NSF DMS-0913757.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengtao Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, P. Efficient Numerical Methods for an Anisotropic, Nonisothermal, Two-Phase Transport Model of Proton Exchange Membrane Fuel Cell. Acta Appl Math 118, 251–279 (2012). https://doi.org/10.1007/s10440-012-9688-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-012-9688-0

Keywords

Navigation