Skip to main content
Log in

Analysis of a Polynomial System Arising in the Design of an Optical Lattice Filter Useful in Channelization

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

In this work, we consider design questions for an active optical lattice filter, which is being manufactured at the University of Texas at Dallas, and which has proven to be useful in the signal processing task of RF channelization. The filter can be described by a linear, discrete time state space model. The controlling agents, the gains, are embedded in the matrices intervening in this state space model. Consequently, techniques from linear feedback control theory do not apply. We concentrate on the question of finding real valued gains so that the A matrix of the state space model has a prescribed characteristic polynomial. We find that three of the coefficients can be arbitrarily picked, but that the remaining are constrained by these and the other system parameters. Our techniques use methods from constructive algebraic geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. El Nagdi, A., Liu, K., LaFave, T.P. Jr., Hunt, L.R., Ramakrishna, V., Dabkoski, M., MacFarlane, D.L., Christensen, M.P.: Active integrated filters for RF-photonic channelizers. Sensors 11, 1297–1320 (2011)

    Article  Google Scholar 

  2. Moslehi, B., Goodman, J.W., Tur, M., Shaw, H.J.: Fiber optic lattice signal processing. Proc. IEEE 72, 909–930 (1984)

    Article  Google Scholar 

  3. Moslehi, B.: Fibre-optic filters employing optical amplifiers to provide design flexibility. Electron. Lett. 28, 226–228 (1992)

    Article  Google Scholar 

  4. Fraile-Peláez, F.J., Capmany, J., Muriel, M.A., Transmission bistability in a double-coupler fiber ring resonator. Opt. Lett. 16, 907–909 (1991)

    Article  Google Scholar 

  5. Sasayama, K., Okuno, M., Habara, K.: Coherent optical transversal filter using silica-based waveguides for high speed signal processing. J. Lightwave Technol. 9, 1225–1230 (1991)

    Article  Google Scholar 

  6. MacFarlane, D.L., Dowling, E.M.: Z-domain techniques in the analysis of Fabry-Perot etalons and multilayer structures. J. Opt. Soc. Am. A 11, 236 (1994)

    Article  Google Scholar 

  7. Madsen, C.K., Zhao, J.H.: Optical Filter Design and Analysis: A Signal Processing Approach. Wiley, New York (1999)

    Google Scholar 

  8. Hunt, L.R., Govindan, V., Panahi, I., Tong, J., Kannan, G., MacFarlane, D.L., Evans, G.A.: Active optical lattice filters. EURASIP J. Appl. Signal Process. 10, 1452–1461 (2005)

    Google Scholar 

  9. Panahi, I., Kannan, G., Hunt, L.R., MacFarlane, D.L., Tong, J.: Lattice filter with adjustable gains and its applications in optical signal processing. In: 2005 IEEE/SP 13th Workshop on Statistical Signal Processing, pp. 321–326. IEEE Press, New York (2005)

    Chapter  Google Scholar 

  10. Proakis, J.G., Manolakis, D.: Digital Signal Processing, Principles Algorithms and Applications. Prentice Hall, New York (1996)

    Google Scholar 

  11. Makhoul, J.: Stable and efficient lattice methods for linear prediction. IEEE Trans. Acoust. Speech Signal Process. 25, 423–428 (1977)

    Article  MATH  Google Scholar 

  12. Makhoul, J.: A class of all-zero lattice digital filters: properties and applications. IEEE Trans. Acoust. Speech Signal Process. 26, 304–314 (1978)

    Article  MATH  Google Scholar 

  13. Gray, A.H. Jr.: Passive cascaded lattice digital filters. IEEE Trans. Circuits Syst. 27, 337–344 (1980)

    Article  MATH  Google Scholar 

  14. Dowling, E.M., MacFarlane, D.L.: Lightwave lattice filters for optically multiplexed communication systems. J. Lightwave Technol. 12, 471 (1994)

    Article  Google Scholar 

  15. Wang, W.S., Davis, R.L., Tung, T.J., Lodenkamper, R., Lembo, L.J., Brock, J.C., Wu, M.C.: Characterization of a coherent optical RF-channelizer based on a diffraction grating. IEEE Trans. Microw. Theory 49, 1996–2001 (2001)

    Article  Google Scholar 

  16. Tu, K.Y., Rasras, M.S., Gill, D.M., Patel, S.S., Chen, Y.K., White, A.E., Pomerene, A., Carothers, D., Beattie, J., Beals, M., Michel, J., Kimmerling, L.C.: Silicon RF-photonic filter and down-converter. J. Lightwave Technol. 28, 3019–3028 (2010)

    Article  Google Scholar 

  17. Pruessner, M.W., Stievater, T.H., Rabinovich, W.S., Devgan, P.S., Urick, V.J.: Silicon-on-insulator integrated waveguide filters for photonic channelizer applications. In: Proc. Conf on Lasers and Electro-Optics (CLEO)/Quantum Electronics and Laser Science (QELS), Baltimore, MD, USA, 31 May 2009, pp. 1–2 (2009)

    Google Scholar 

  18. Winnall, S.T., Lindsay, A.C., Austin, M.W., Canning, J., Michell, A.: A microwave channelizer and spectroscope based on an integrated optical Bragg-Grating Fabry-Perot and integrated hybrid fresnel lens system. IEEE Trans. Microw. Theory 54, 868–872 (2006)

    Article  Google Scholar 

  19. Hunter, D.B., Minasian, R.A.: Microwave optical filters using in-fiber Bragg Grating arrays. IEEE Microw. Guided Wave Lett. 6, 103–105 (1996)

    Article  Google Scholar 

  20. Tu, K.Y., Chen, Y.K., Leven, A., Rasras, M.S., Gill, D.M., Patel, S.S., White, A.E., Carothers, D., Pomerene, A., Grove, M.J., Sparacin, D.K., Michel, J., Beals, M., Kimmerling, L.C.: Analog performance of a CMOS optical filter. In: Proc. of III IEEE. Int. Conf. on Group IV Photonics, Ottawa, ON, Canada, 9 October 2006, pp. 197–199 (2006)

    Google Scholar 

  21. Goutzoulis, A.P.: Integrated optical channelizer. US Patent 7421168B1, September 2008

  22. Tong, J., Wade, K., MacFarlane, D.L., Shi, H.X., McWilliams, S., Evans, G.A., Christensen, M.P.: Active integrated photonic true time delay device. IEEE Photonics Technol. Lett. 18, 1720–1722 (2006)

    Article  Google Scholar 

  23. Ohman, F., Yvind, K., Mork, J.: Slow light in a semiconductor waveguide for true time-delay applications in micorowave photonics. IEEE Photonics Technol. Lett. 19, 1145–1147 (2007)

    Article  Google Scholar 

  24. MacFarlane, D.L., Christensen, M.P., El Nagdi, A., Evans, G.A., Hunt, L.R., Huntoon, N., Kim, J., Kim, T.W., Kirk, J., LaFave, T.P. Jr., Liu, K., Ramakrishna, V., Dabkowski, M., Sultana, N.: Experiment and theory of an active optical filter. IEEE J. Quantum Electron. 48, 307–317 (2012)

    Article  Google Scholar 

  25. Chen, C.T.: Linear System Theory and Design. Oxford University Press, London (1999)

    Google Scholar 

  26. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties and Algorithms. Springer, Heidelberg (2000)

    Google Scholar 

  27. Dabkowski, M.: Bézout’s theorem. M.Sc. thesis, Gdansk University, Gdansk, Poland, July 1998

  28. Bernstein, D.: Matrix Mathematics. Princeton University Press, Princeton (2005)

    MATH  Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge the support of the Defense Advanced Research Project Agency (DARPA) through grant No. HR0011-8-1-005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viswanath Ramakrishna.

Additional information

This paper is dedicated to Professor Goong Chen, on the occasion of his 60th birthday. He has been a wonderful colleague of, and an astute mentor to, the corresponding author.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheek, B., Dabkowski, M., El Nagdi, A. et al. Analysis of a Polynomial System Arising in the Design of an Optical Lattice Filter Useful in Channelization. Acta Appl Math 118, 107–123 (2012). https://doi.org/10.1007/s10440-012-9680-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-012-9680-8

Keywords

Navigation