Skip to main content
Log in

Existence Theory for an Arbitrary Order Fractional Differential Equation with Deviating Argument

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

In this paper, we are concerned with the existence criteria for positive solutions of the following nonlinear arbitrary order fractional differential equations with deviating argument

$$\left \{\begin{array}{l@{\quad}l}D_{0^+}^{\alpha}u(t)+h(t)f(u(\theta(t)))=0, & t\in ( 0,1 ),\ n-1<\alpha\leq n,\\[3pt]u^{(i)}(0)=0, & i=0,1,2,\ldots,n-2,\\[3pt][D_{0^+}^{\beta} u(t)]_{t=1}=0, & 1\leq\beta\leq n-2,\end{array} \right .$$

where n>3 (n∈ℕ), \(D_{0^{+}}^{\alpha}\) is the standard Riemann-Liouville fractional derivative of order α,f:[0,∞)→[0,∞), h(t):[0,1]→(0,∞) and θ:(0,1)→(0,1] are continuous functions. Some novel sufficient conditions are obtained for the existence of at least one or two positive solutions by using the Krasnosel’skii’s fixed point theorem, and some other new sufficient conditions are derived for the existence of at least triple positive solutions by using the fixed point theorems developed by Leggett and Williams etc. In particular, the existence of at least n or 2n−1 distinct positive solutions is established by using the solution intervals and local properties. From the viewpoint of applications, two examples are given to illustrate the effectiveness of our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  2. Kilbas, A.A., Trujillo, J.J.: Differential equations of fractional order: methods, results and problems. I. Appl. Anal. 78, 153–192 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Lakshmikantham, V., Leela, S., Vasundhara Devi, J.: Theory of Fractional Dynamic Systems. Cambridge Academic Publishers, Cambridge (2009)

    MATH  Google Scholar 

  4. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  5. Sabatier, J., Agrawal, O.P., Machado, J.A.T.: Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering. Springer, Dordrecht (2007)

    MATH  Google Scholar 

  6. Bai, Z.B., Lü, H.: Positive solutions for boundary value problem of nonlinear fractional differential equation. J. Math. Anal. Appl. 311, 495–505 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kaufmann, E.R., Mboumi, E.: Positive solutions of a boundary value problem for a nonlinear fractional differential equation. Electron. J. Qual. Theory Differ. Equ. 2008(3), 1–11 (2008)

    MathSciNet  Google Scholar 

  8. Goodrich, C.S.: Existence of a positive solution to a class of fractional differential equations. Appl. Math. Lett. 23, 1050–1055 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Krasnosel’skii, M.: Positive Solutions of Operator Equations. Noordhoff, Groningen (1964)

    Google Scholar 

  10. Leggett, R.W., Williams, L.R.: Multiple positive fixed points of nonlinear operators on ordered Banach spaces. Indiana Univ. Math. J. 28, 673–688 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jankowski, T.: Positive solutions for fourth-order differential equations with deviating arguments and integral boundary conditions. Nonlinear Anal. 73, 1289–1299 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Yan, J.R.: Oscillation of first-order impulsive differential equations with advanced argument. Comput. Math. Appl. 42, 1353–1363 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Wang, G.: Boundary value problems for systems of nonlinear integro-differential equations with deviating arguments. J. Comput. Appl. Math. 234, 1356–1363 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Avery, R.I., Peterson, A.: Three positive fixed points of nonlinear operators on ordered Banach spaces. Comput. Math. Appl. 42, 313–422 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Avery, R.I., Henderson, J.: Two positive fixed points of nonlinear operator on ordered Banach spaces. Commun. Appl. Nonlinear Anal. 8, 27–36 (2001)

    MathSciNet  MATH  Google Scholar 

  16. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  17. Deimling, K.: Nonlinear Functional Analysis. Springer, New York (1985)

    MATH  Google Scholar 

  18. Guo, D., Lakshmikantham, V.: Nonlinear Problems in Abstract Cones. Academic Press, San Diego (1988)

    MATH  Google Scholar 

  19. Ren, J.L., Ge, W., Ren, B.X.: Existence of three solutions for quasi-nonlinear boundary value problems. Acta Math. Appl. Sin. 21, 353–358 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Su, Y.H.: Multiple positive pseudo-symmetric solutions of p-Laplacian dynamic equations on time scales. Math. Comput. Model. 49, 1664–1681 (2009)

    Article  MATH  Google Scholar 

  21. Li, S.B., Su, Y.H., Feng, Z.: Positive solutions to p-Laplacian multi-point BVPs on time scales. Dyn. Partial. Differ. Equ. 7, 45–64 (2010)

    MathSciNet  MATH  Google Scholar 

  22. Su, Y.H., Feng, Z.: Positive solutions to the singular p-Laplacian BVPs with sign-changing nonlinearities and higher-order derivatives in Banach spaces on time scales. Dyn. Partial. Differ. Equ. 8, 149–171 (2011)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaosheng Feng.

Additional information

This work is supported by the Grant of Department of Education of Jiangsu Province under 09KJD110006 and Qing Lan Project and XZIT (XKY2010101).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, Y., Feng, Z. Existence Theory for an Arbitrary Order Fractional Differential Equation with Deviating Argument. Acta Appl Math 118, 81–105 (2012). https://doi.org/10.1007/s10440-012-9679-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-012-9679-1

Keywords

Mathematics Subject Classification (2000)

Navigation