Skip to main content
Log in

A Feed-Forward Neural Network for Solving Stokes Problem

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

The current research attempts to offer a novel method for solving the Stokes problem based on the use of feed-forward neural networks. We transform the mixed Stokes problem into three independent Poisson problems which by solving them the solution of the Stokes problem is obtained. The results obtained by this method, has been compared with the existing numerical method and with the exact solution of the problem. It can be observed that the current new approximation has higher accuracy. The number of model parameters required is less than conventional methods. The proposed new method is illustrated by two examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nicolaides, R.A.: Analysis and convergence of the MAC scheme II, Navier–Stokes equations. SIAM J. Numer. Anal. 65(213), 29–44 (1992)

    MathSciNet  Google Scholar 

  2. Girault, V., Raviart, P.A.: Finite Element Method for Navier–Stokes Equations: Theory and Algorithms. Springer, New York (1986)

    Book  Google Scholar 

  3. Temam, R.: Navier–Stokes Equation, Theory and Numerical Analysis. North-Holland, Amsterdam (1984)

    Google Scholar 

  4. Thomasset, F.: Implementation of Finite Element Methods for Navier–Stokes Equations. Springer, Berlin (1981)

    MATH  Google Scholar 

  5. Eymard, R., Herbin, R.: A staggered finite volume scheme on general meshes for the Navier–Stokes equations in two space dimensions. Int. J. Finite Electron. 2(1) (2005)

  6. Cockburn, B., Kanschat, G., Schötzau, D.: A locally conservative LDG method for the incompressible Navier-Stokes equations. Math. Comput. 74, 1067–1095 (2005)

    MATH  Google Scholar 

  7. Cockburn, B., Kanschat, G., Schötzau, D., Schwab, C.: Local discontinuous Galerkin methods for the Stokes system. SIAM J. Numer. Anal. 40, 319–343 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Girault, V., Rivière, B., Wheeler, M.F.: A discontinuous Galerkin method with noncon-forming domain decomposition for Stokes and Navier-Stokes problems. Math. Comput. 74, 53–84 (2004)

    Article  Google Scholar 

  9. Ye, X.: Discontinuous stable elements for the incompressible flow. Adv. Comput. Math. 20, 333–345 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Griffiths, D.: Finite element for incompressible flow. Math. Methods Appl. Sci. 1, 16–31 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ye, X., Hall, C.: A Discrete divergence free basis for finite element methods. Numer. Algorithms 16, 365–380 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ye, X., Hall, C.: The Construction of null basis for a discrete divergence operator. J. Comput. Appl. Math. 58, 117–133 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. Wang, J., Ye, X.: New finite element methods in computational fluid dynamics by H(div) elements. SIAM J. Numer. Anal. 45, 1269–1286 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Wang, J., Wang, X., Ye, X.: Finite element methods for the Navier-Stokes equations by H(div) elements. J. Comput. Math. 26, 410–436 (2008)

    MathSciNet  MATH  Google Scholar 

  15. Hammerstrom, D.: Neural networks at work. IEEE Spectr. 26–53 (1993)

  16. Debar, H., Becke, M., Siboni, D.: A neural network component for an intrusion detection system. In: Proceedings of the IEEE Computer Society Symposium on Research in Security and Privacy (1992)

    Google Scholar 

  17. Tan, K.: The application of neural networks to UNIX computer security. In: Proceedings of the IEEE International Conference on Neural Networks, vol. 1, pp. 476–481 (1995)

    Chapter  Google Scholar 

  18. Helman, P., Liepins, G.: Statistical foundations of audit trail analysis for the detection of computer misuse. IEEE Trans. Softw. Eng. 19(9), 886–901 (1993)

    Article  Google Scholar 

  19. Davidon, W.C.: Variable metric algorithm for minimization. Argonne National Laboratory Report ANL-5990 (Rev.) (1959)

  20. Fletcher, R., Powell, M.J.D.: A rapidly convergent descent method for minimization. Comput. J. 6, 163–168 (1963)

    MathSciNet  MATH  Google Scholar 

  21. Luenberger, D.G.: Linear and Nonlinear Programming, 2nd edn. Addison-Wesley, Reading (1984)

    MATH  Google Scholar 

  22. Aman, M., Kerayechian, A.: Solving the Stokes problem by linear programming methods. Int. Math. J. 5(1), 9–22 (2004)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Baymani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baymani, M., Effati, S. & Kerayechian, A. A Feed-Forward Neural Network for Solving Stokes Problem. Acta Appl Math 116, 55 (2011). https://doi.org/10.1007/s10440-011-9627-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10440-011-9627-5

Keywords

Navigation