Abstract
We study the stationary motion of a micropolar fluid in a thin (or long) curved pipe via rigorous asymptotic analysis. An asymptotic solution is found, showing explicitly the effects of pipe’s distortion and microstructure on the effective behavior of the flow. We justify the obtained model by proving the corresponding error estimate.
This is a preview of subscription content, access via your institution.
References
Eringen, A.C.: Theory of micropolar fluids. J. Math. Mech. 16, 1–18 (1966)
Lukaszewicz, G.: Micropolar Fluids: Theory and Applications. Birkhäuser, Boston (1999)
Ciarletta, M.: Spatial decay estimates for heat–conducting micropolar fluids. Int. J. Eng. Sci. 39, 655–668 (2001)
Lukaszewicz, G., Rojas-Medas, M.A., Santos, M.M.: Stationary micropolar fluids with boundary data in L 2. J. Math. Anal. Appl. 271, 91–107 (2001)
Stavre, R.: The control of the pressure for a micropolar fluid. Z. Angew. Math. Phys. 53, 912–992 (2002)
Borelli, A., Patria, M.C., Piras, E.: Spatial decay estimate in steady motion of a micropolar fluid in a pipe. Ann. Univ. Ferrara 50, 1–21 (2004)
Dupuy, D., Panasenko, G., Stavre, R.: Asymptotic methods for micropolar fluids in a tube structure. Math. Models Methods Appl. Sci. 14, 735–758 (2004)
Dupuy, D., Panasenko, G., Stavre, R.: Asymptotic solution for a micropolar flow in a curvilinear channel. Z. Angew. Math. Mech. 88, 793–807 (2008)
Marušić-Paloka, E.: The effects of flexion and torsion for a fluid flow through a curved pipe. Appl. Math. Optim. 44, 245–272 (2001)
Marušić-Paloka, E., Pažanin, I.: Fluid flow through a helical pipe. Z. Angew. Math. Phys. 58, 81–99 (2007)
Marušić-Paloka, E., Pažanin, I.: On the effects of curved geometry on heat conduction through a distorted pipe. Nonlinear Anal.: Real World Appl. 11, 4554–4564 (2010)
Marušić-Paloka, E., Pažanin, I.: Modelling of heat transfer in a laminar flow through a helical pipe. Math. Comput. Model. 50, 1571–1582 (2009)
Germano, M.: On the effect of torsion on a helical pipe flow. J. Fluid Mech. 125, 1–8 (1982)
Germano, M.: The Dean equations extended to a helical pipe flow. J. Fluid Mech. 203, 289–305 (1989)
Aero, E.L., Bulganin, A.N., Kuvshinski, E.V.: Asymmetric hydrodynamics. Prikl. Mat. Meh. 29, 297–308 (1965) (in Russian)
Allen, S.J., Kline, K.A.: The effect of concentration in fluid suspension. Trans. Soc. Rheol. 12, 457–468 (1968)
Aganović, I.: An Introduction to Boundary Value Problems of Continuum Mechanics. Element, Zagreb (2003) (in Croatian)
Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations, vol. I. Springer, Berlin (1994)
Marušić-Paloka, E., Pažanin, I.: Non-isothermal fluid flow through a thin pipe with cooling. Appl. Anal. 88, 495–515 (2009)
Dean, W.R.: Note on the motion of fluid in a curved pipe. Philos. Mag. 4, 208–223 (1927)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Pažanin, I. Asymptotic Behavior of Micropolar Fluid Flow Through a Curved Pipe. Acta Appl Math 116, 1 (2011). https://doi.org/10.1007/s10440-011-9625-7
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10440-011-9625-7
Keywords
- Micropolar fluid
- Curved pipe
- Curvilinear coordinates
- Asymptotic expansion